Lorenzo Dello Schiavo, Ronan Herry, Eva Kopfer, Karl-Theodor Sturm
{"title":"Conformally invariant random fields, Liouville quantum gravity measures, and random Paneitz operators on Riemannian manifolds of even dimension","authors":"Lorenzo Dello Schiavo, Ronan Herry, Eva Kopfer, Karl-Theodor Sturm","doi":"10.1112/jlms.70003","DOIUrl":null,"url":null,"abstract":"<p>For large classes of <i>even-dimensional</i> Riemannian manifolds <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>M</mi>\n <mo>,</mo>\n <mi>g</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(M,g)$</annotation>\n </semantics></math>, we construct and analyze conformally invariant random fields. These centered Gaussian fields <span></span><math>\n <semantics>\n <mrow>\n <mi>h</mi>\n <mo>=</mo>\n <msub>\n <mi>h</mi>\n <mi>g</mi>\n </msub>\n </mrow>\n <annotation>$h=h_g$</annotation>\n </semantics></math>, called <i>co-polyharmonic Gaussian fields</i>, are characterized by their covariance kernels <i>k</i> which exhibit a precise logarithmic divergence: <span></span><math>\n <semantics>\n <mrow>\n <mo>|</mo>\n <mi>k</mi>\n <mrow>\n <mo>(</mo>\n <mi>x</mi>\n <mo>,</mo>\n <mi>y</mi>\n <mo>)</mo>\n </mrow>\n <mo>−</mo>\n <mi>log</mi>\n <mfrac>\n <mn>1</mn>\n <mrow>\n <mi>d</mi>\n <mo>(</mo>\n <mi>x</mi>\n <mo>,</mo>\n <mi>y</mi>\n <mo>)</mo>\n </mrow>\n </mfrac>\n <mo>|</mo>\n <mo>≤</mo>\n <mi>C</mi>\n </mrow>\n <annotation>$\\big\\vert k(x,y)-\\log\\frac1{d(x,y)}\\big\\vert \\le C$</annotation>\n </semantics></math>. They share a fundamental quasi-invariance property under conformal transformations. In terms of the co-polyharmonic Gaussian field <span></span><math>\n <semantics>\n <mi>h</mi>\n <annotation>$h$</annotation>\n </semantics></math>, we define the <i>Liouville Quantum Gravity measure</i>, a random measure on <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math>, heuristically given as\n\n </p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70003","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70003","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
For large classes of even-dimensional Riemannian manifolds , we construct and analyze conformally invariant random fields. These centered Gaussian fields , called co-polyharmonic Gaussian fields, are characterized by their covariance kernels k which exhibit a precise logarithmic divergence: . They share a fundamental quasi-invariance property under conformal transformations. In terms of the co-polyharmonic Gaussian field , we define the Liouville Quantum Gravity measure, a random measure on , heuristically given as
对于偶维黎曼流形 ( M , g ) $(M,g)$ 的大类,我们构建并分析了保形不变随机场。这些居中高斯场 h = h g $h=h_g$,称为共多谐高斯场,其协方差核 k 表现出精确的对数发散: | k ( x , y ) - log 1 d ( x , y ) ≤ C $\big\vert k(x,y)-\log\frac1{d(x,y)}\big\vert \le C$ 。它们在共形变换下具有基本的准不变性。就共多谐波高斯场 h $h$ 而言,我们定义了柳维尔量子引力度量,即 M $M$ 上的随机度量,启发式为
期刊介绍:
The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.