Ionospheric and Thermospheric Effects of Hurricane Grace in 2021 Observed by Satellites

IF 2.6 2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS
Ayden L. S. Gann, Erdal Yiğit
{"title":"Ionospheric and Thermospheric Effects of Hurricane Grace in 2021 Observed by Satellites","authors":"Ayden L. S. Gann,&nbsp;Erdal Yiğit","doi":"10.1029/2024JA032933","DOIUrl":null,"url":null,"abstract":"<p>Effects of Hurricane Grace in August 2021 are studied in the thermosphere and ionosphere, using data from the COSMIC-2, ICON, and GOLD satellites. Significant impacts on electron density, thermospheric winds, and temperature are observed after the onset of the hurricane, compared to the pre-hurricane phase. Comparison of the observations during the hurricane with the ones during a non-hurricane year clearly provides further evidence for substantial hurricane-induced thermospheric and ionospheric changes. We reveal an enhancement in electron density during the hurricane's rapid intensification and pronounced changes in thermospheric winds. Additionally, the low-latitude thermosphere exhibits considerable warming of up to 70 K around 150 km during this period. These changes highlight the long-range vertical coupling mechanisms between hurricanes and the upper atmosphere, and provide valuable insights into the profound influence of meteorological events on upper atmospheric dynamics, emphasizing the need for further exploration.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JA032933","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JA032933","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Effects of Hurricane Grace in August 2021 are studied in the thermosphere and ionosphere, using data from the COSMIC-2, ICON, and GOLD satellites. Significant impacts on electron density, thermospheric winds, and temperature are observed after the onset of the hurricane, compared to the pre-hurricane phase. Comparison of the observations during the hurricane with the ones during a non-hurricane year clearly provides further evidence for substantial hurricane-induced thermospheric and ionospheric changes. We reveal an enhancement in electron density during the hurricane's rapid intensification and pronounced changes in thermospheric winds. Additionally, the low-latitude thermosphere exhibits considerable warming of up to 70 K around 150 km during this period. These changes highlight the long-range vertical coupling mechanisms between hurricanes and the upper atmosphere, and provide valuable insights into the profound influence of meteorological events on upper atmospheric dynamics, emphasizing the need for further exploration.

Abstract Image

卫星观测到的 2021 年飓风格蕾丝的电离层和热层效应
利用 COSMIC-2、ICON 和 GOLD 卫星提供的数据,研究了 2021 年 8 月飓风 Grace 对热层和电离层的影响。与飓风来临前的阶段相比,飓风来临后对电子密度、热大气层风和温度产生了重大影响。将飓风期间的观测结果与非飓风年的观测结果进行比较,可以清楚地进一步证明飓风引起的热层和电离层的巨大变化。我们发现,在飓风迅速增强期间,电子密度有所提高,热层风也发生了明显变化。此外,在此期间,低纬度热层在 150 公里附近出现了高达 70 K 的显著升温。这些变化凸显了飓风与高层大气之间的长程垂直耦合机制,为气象事件对高层大气动力学的深刻影响提供了宝贵的见解,强调了进一步探索的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Space Physics
Journal of Geophysical Research: Space Physics Earth and Planetary Sciences-Geophysics
CiteScore
5.30
自引率
35.70%
发文量
570
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信