{"title":"Analysis of etched drain based Cylindrical agate-all-around tunnel field effect transistor based static random access memory cell design","authors":"Ankur Beohar, Ribu Mathew, Darshan Sarode, Abhishek Kumar Upadhyay, Kavita Khare","doi":"10.1002/jnm.3296","DOIUrl":null,"url":null,"abstract":"<p>This paper aims to propose a novel method for designing an static random access memory (SRAM) cell using an etched drain based Cyl GAA TFET with a hetero-substrate material and an elevated density strip. The aim is to reduce power dissipation and improve stability, as demonstrated through analysis utilizing static noise margin (SNM) as well as N-curve methods. With respect to the 16 nm MOSFET based SRAM cell, the proposed device-based SRAM cell shows significant improvements with a 68.305% reduction in leakage power, a 15.58% increase in static voltage noise margin (SVNM), an 8.623% increase in static current noise margin (SINM), an 8.152% increase in write trip voltage (WTV), a 12.86% increase in write trip current (WTI), a 27.62% increase in static power noise margin (SPNM), and a 19.95% increase in write trip power (WTP). The design is implemented and analyzed using Cadence Virtuoso software, and a novel approach of look up tables and Verilog A is utilized for the device to circuit application. These results indicate promising advancements in the design of SRAM cells, which could have significant implications for the development of advanced computer systems.</p>","PeriodicalId":50300,"journal":{"name":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jnm.3296","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper aims to propose a novel method for designing an static random access memory (SRAM) cell using an etched drain based Cyl GAA TFET with a hetero-substrate material and an elevated density strip. The aim is to reduce power dissipation and improve stability, as demonstrated through analysis utilizing static noise margin (SNM) as well as N-curve methods. With respect to the 16 nm MOSFET based SRAM cell, the proposed device-based SRAM cell shows significant improvements with a 68.305% reduction in leakage power, a 15.58% increase in static voltage noise margin (SVNM), an 8.623% increase in static current noise margin (SINM), an 8.152% increase in write trip voltage (WTV), a 12.86% increase in write trip current (WTI), a 27.62% increase in static power noise margin (SPNM), and a 19.95% increase in write trip power (WTP). The design is implemented and analyzed using Cadence Virtuoso software, and a novel approach of look up tables and Verilog A is utilized for the device to circuit application. These results indicate promising advancements in the design of SRAM cells, which could have significant implications for the development of advanced computer systems.
期刊介绍:
Prediction through modelling forms the basis of engineering design. The computational power at the fingertips of the professional engineer is increasing enormously and techniques for computer simulation are changing rapidly. Engineers need models which relate to their design area and which are adaptable to new design concepts. They also need efficient and friendly ways of presenting, viewing and transmitting the data associated with their models.
The International Journal of Numerical Modelling: Electronic Networks, Devices and Fields provides a communication vehicle for numerical modelling methods and data preparation methods associated with electrical and electronic circuits and fields. It concentrates on numerical modelling rather than abstract numerical mathematics.
Contributions on numerical modelling will cover the entire subject of electrical and electronic engineering. They will range from electrical distribution networks to integrated circuits on VLSI design, and from static electric and magnetic fields through microwaves to optical design. They will also include the use of electrical networks as a modelling medium.