{"title":"Impact Pattern of Energetic Particle Precipitation on Polar Mesospheric Ozone","authors":"Yuting Wang, Hui Li, Chi Wang","doi":"10.1029/2024JA032877","DOIUrl":null,"url":null,"abstract":"<p>The upper atmosphere of polar regions exhibits two distinct patterns of energetic particle precipitation that can lead to ozone destruction by ionizing the atmosphere: one is the energetic proton precipitation in the polar cap region during solar proton events (SPEs), and the other is the energetic electron precipitations (EEPs) in the auroral oval region from the radiation belt. In this study, we conduct case studies and statistical analyses of ozone observations from the Aura satellite to present the quantitative difference in the impact patterns of SPEs and EEPs on polar mesospheric ozone. According to our statistical analysis of 13 SPEs and 19 EEPs during the MLS time frame, the magnitude of ozone depletion during SPEs is greater than during EEPs. The ozone depletion during SPEs is more pronounced at higher geomagnetic latitudes and negatively correlates with the proton flux, while during EEPs the ozone depletion is more in favor of the geomagnetic latitude band of 60–70° but independent of the electron count rates. In addition, hydroxyl enhancement also exhibits different patterns during SPEs and EEPs, similar to that of ozone depletion. This study further validates the physical link between the magnetosphere and atmosphere and promotes our understanding of the solar influence on Earth's climate.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"129 10","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JA032877","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The upper atmosphere of polar regions exhibits two distinct patterns of energetic particle precipitation that can lead to ozone destruction by ionizing the atmosphere: one is the energetic proton precipitation in the polar cap region during solar proton events (SPEs), and the other is the energetic electron precipitations (EEPs) in the auroral oval region from the radiation belt. In this study, we conduct case studies and statistical analyses of ozone observations from the Aura satellite to present the quantitative difference in the impact patterns of SPEs and EEPs on polar mesospheric ozone. According to our statistical analysis of 13 SPEs and 19 EEPs during the MLS time frame, the magnitude of ozone depletion during SPEs is greater than during EEPs. The ozone depletion during SPEs is more pronounced at higher geomagnetic latitudes and negatively correlates with the proton flux, while during EEPs the ozone depletion is more in favor of the geomagnetic latitude band of 60–70° but independent of the electron count rates. In addition, hydroxyl enhancement also exhibits different patterns during SPEs and EEPs, similar to that of ozone depletion. This study further validates the physical link between the magnetosphere and atmosphere and promotes our understanding of the solar influence on Earth's climate.