Using Geostationary Satellite Observations and Machine Learning Models to Estimate Ecosystem Carbon Uptake and Respiration at Half Hourly Time Steps at Eddy Covariance Sites

IF 4.4 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Sadegh Ranjbar, Daniele Losos, Sophie Hoffman, Matthias Cuntz, Paul C. Stoy
{"title":"Using Geostationary Satellite Observations and Machine Learning Models to Estimate Ecosystem Carbon Uptake and Respiration at Half Hourly Time Steps at Eddy Covariance Sites","authors":"Sadegh Ranjbar,&nbsp;Daniele Losos,&nbsp;Sophie Hoffman,&nbsp;Matthias Cuntz,&nbsp;Paul C. Stoy","doi":"10.1029/2024MS004341","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <p>Polar-orbiting satellites have significantly improved our understanding of the terrestrial carbon cycle, yet they are not designed to observe sub-daily dynamics that can provide unique insight into carbon cycle processes. Geostationary satellites offer remote sensing capabilities at temporal resolutions of 5-min, or even less. This study explores the use of geostationary satellite data acquired by the Geostationary Operational Environmental Satellite—R Series (GOES-R) to estimate terrestrial gross primary productivity (GPP) and ecosystem respiration (RECO) using machine learning. We collected and processed data from 126 AmeriFlux eddy covariance towers in the Contiguous United States synchronized with imagery from the GOES-R Advanced Baseline Imager (ABI) from 2017 to 2022 to develop ML models and assess their performance. Tree-based ensemble regressions showed promising performance for predicting GPP (R<sup>2</sup> of 0.70 ± 0.11 and RMSE of 4.04 ± 1.65 μmol m<sup>−2</sup> s<sup>−1</sup>) and RECO (R<sup>2</sup> of 0.77 ± 0.10 and RMSE of 0.90 ± 0.49 μmol m<sup>−2</sup> s<sup>−1</sup>) on a half-hourly time step using GOES-R surface products and top-of-atmosphere observations. Our findings align with global efforts to utilize geostationary satellites to improve carbon flux estimation and provide insight into how to estimate terrestrial carbon dioxide fluxes in near-real time.</p>\n </section>\n </div>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"16 10","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004341","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004341","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Polar-orbiting satellites have significantly improved our understanding of the terrestrial carbon cycle, yet they are not designed to observe sub-daily dynamics that can provide unique insight into carbon cycle processes. Geostationary satellites offer remote sensing capabilities at temporal resolutions of 5-min, or even less. This study explores the use of geostationary satellite data acquired by the Geostationary Operational Environmental Satellite—R Series (GOES-R) to estimate terrestrial gross primary productivity (GPP) and ecosystem respiration (RECO) using machine learning. We collected and processed data from 126 AmeriFlux eddy covariance towers in the Contiguous United States synchronized with imagery from the GOES-R Advanced Baseline Imager (ABI) from 2017 to 2022 to develop ML models and assess their performance. Tree-based ensemble regressions showed promising performance for predicting GPP (R2 of 0.70 ± 0.11 and RMSE of 4.04 ± 1.65 μmol m−2 s−1) and RECO (R2 of 0.77 ± 0.10 and RMSE of 0.90 ± 0.49 μmol m−2 s−1) on a half-hourly time step using GOES-R surface products and top-of-atmosphere observations. Our findings align with global efforts to utilize geostationary satellites to improve carbon flux estimation and provide insight into how to estimate terrestrial carbon dioxide fluxes in near-real time.

Abstract Image

利用地球静止卫星观测数据和机器学习模型估算涡动协方差站点每半小时时间步长的生态系统碳吸收和呼吸量
极轨卫星极大地提高了我们对陆地碳循环的认识,但它们的设计并不是为了观测可提供碳循环过程独特见解的次日动态。地球静止卫星具有 5 分钟甚至更低时间分辨率的遥感能力。本研究探讨了如何利用地球静止环境业务卫星-R 系列(GOES-R)获取的地球静止卫星数据,通过机器学习估算陆地总初级生产力(GPP)和生态系统呼吸作用(RECO)。我们收集并处理了美国毗连地区 126 座 AmeriFlux 涡度协方差塔的数据,这些数据与 GOES-R 高级基线成像仪 (ABI) 在 2017 年至 2022 年期间拍摄的图像同步,以开发 ML 模型并评估其性能。基于树的集合回归结果表明,利用 GOES-R 地表产品和大气顶部观测数据,以半小时为时间步长预测 GPP(R2 为 0.70 ± 0.11,RMSE 为 4.04 ± 1.65 μmol m-2 s-1)和 RECO(R2 为 0.77 ± 0.10,RMSE 为 0.90 ± 0.49 μmol m-2 s-1)的性能良好。我们的研究结果与全球利用地球静止卫星改进碳通量估算的努力相一致,并为如何近实时估算陆地二氧化碳通量提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Advances in Modeling Earth Systems
Journal of Advances in Modeling Earth Systems METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
11.40
自引率
11.80%
发文量
241
审稿时长
>12 weeks
期刊介绍: The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community. Open access. Articles are available free of charge for everyone with Internet access to view and download. Formal peer review. Supplemental material, such as code samples, images, and visualizations, is published at no additional charge. No additional charge for color figures. Modest page charges to cover production costs. Articles published in high-quality full text PDF, HTML, and XML. Internal and external reference linking, DOI registration, and forward linking via CrossRef.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信