The Lubin–Tate theory of configuration spaces: I

IF 0.8 2区 数学 Q2 MATHEMATICS
D. Lukas B. Brantner, Jeremy Hahn, Ben Knudsen
{"title":"The Lubin–Tate theory of configuration spaces: I","authors":"D. Lukas B. Brantner,&nbsp;Jeremy Hahn,&nbsp;Ben Knudsen","doi":"10.1112/topo.70000","DOIUrl":null,"url":null,"abstract":"<p>We construct a spectral sequence converging to the Lubin–Tate theory, that is, Morava <span></span><math>\n <semantics>\n <mi>E</mi>\n <annotation>$E$</annotation>\n </semantics></math>-theory, of unordered configuration spaces and identify its <span></span><math>\n <semantics>\n <msup>\n <mi>E</mi>\n <mn>2</mn>\n </msup>\n <annotation>${\\mathrm{E}^2}$</annotation>\n </semantics></math>-page as the homology of a Chevalley–Eilenberg-like complex for Hecke Lie algebras. Based on this, we compute the <span></span><math>\n <semantics>\n <mi>E</mi>\n <annotation>$E$</annotation>\n </semantics></math>-theory of the weight <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math> summands of iterated loop spaces of spheres (parameterizing the weight <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math> operations on <span></span><math>\n <semantics>\n <msub>\n <mi>E</mi>\n <mi>n</mi>\n </msub>\n <annotation>$\\mathbb {E}_n$</annotation>\n </semantics></math>-algebras), as well as the <span></span><math>\n <semantics>\n <mi>E</mi>\n <annotation>$E$</annotation>\n </semantics></math>-theory of the configuration spaces of <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math> points on a punctured surface. We read off the corresponding Morava <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math>-theory groups, which appear in a conjecture by Ravenel. Finally, we compute the <span></span><math>\n <semantics>\n <msub>\n <mi>F</mi>\n <mi>p</mi>\n </msub>\n <annotation>$\\mathbb {F}_p$</annotation>\n </semantics></math>-homology of the space of unordered configurations of <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math> particles on a punctured surface.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"17 4","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.70000","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We construct a spectral sequence converging to the Lubin–Tate theory, that is, Morava E $E$ -theory, of unordered configuration spaces and identify its E 2 ${\mathrm{E}^2}$ -page as the homology of a Chevalley–Eilenberg-like complex for Hecke Lie algebras. Based on this, we compute the E $E$ -theory of the weight p $p$ summands of iterated loop spaces of spheres (parameterizing the weight p $p$ operations on E n $\mathbb {E}_n$ -algebras), as well as the E $E$ -theory of the configuration spaces of p $p$ points on a punctured surface. We read off the corresponding Morava K $K$ -theory groups, which appear in a conjecture by Ravenel. Finally, we compute the F p $\mathbb {F}_p$ -homology of the space of unordered configurations of p $p$ particles on a punctured surface.

构型空间的卢宾-塔特理论:I
我们构建了一个收敛于无序配置空间的卢宾-塔特理论(即莫拉瓦 E $E$ -理论)的谱序列,并将其 E 2 ${\mathrm{E}^2}$ -页确定为赫克李代数的切瓦利-艾伦伯格类复数的同调。在此基础上,我们计算了球面迭代环空间的权 p $p$ 和的 E $E$ 理论(参数化了 E n $\mathbb {E}_n$ -代数的权 p $p$ 运算),以及穿刺面上 p $p$ 点的配置空间的 E $E$ 理论。我们读出了相应的莫拉瓦 K $K$ 理论群,它们出现在拉文内尔的一个猜想中。最后,我们计算了穿刺面上 p $p$ 粒子无序配置空间的 F p $\mathbb {F}_p$ -同调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Topology
Journal of Topology 数学-数学
CiteScore
2.00
自引率
9.10%
发文量
62
审稿时长
>12 weeks
期刊介绍: The Journal of Topology publishes papers of high quality and significance in topology, geometry and adjacent areas of mathematics. Interesting, important and often unexpected links connect topology and geometry with many other parts of mathematics, and the editors welcome submissions on exciting new advances concerning such links, as well as those in the core subject areas of the journal. The Journal of Topology was founded in 2008. It is published quarterly with articles published individually online prior to appearing in a printed issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信