{"title":"The Lubin–Tate theory of configuration spaces: I","authors":"D. Lukas B. Brantner, Jeremy Hahn, Ben Knudsen","doi":"10.1112/topo.70000","DOIUrl":null,"url":null,"abstract":"<p>We construct a spectral sequence converging to the Lubin–Tate theory, that is, Morava <span></span><math>\n <semantics>\n <mi>E</mi>\n <annotation>$E$</annotation>\n </semantics></math>-theory, of unordered configuration spaces and identify its <span></span><math>\n <semantics>\n <msup>\n <mi>E</mi>\n <mn>2</mn>\n </msup>\n <annotation>${\\mathrm{E}^2}$</annotation>\n </semantics></math>-page as the homology of a Chevalley–Eilenberg-like complex for Hecke Lie algebras. Based on this, we compute the <span></span><math>\n <semantics>\n <mi>E</mi>\n <annotation>$E$</annotation>\n </semantics></math>-theory of the weight <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math> summands of iterated loop spaces of spheres (parameterizing the weight <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math> operations on <span></span><math>\n <semantics>\n <msub>\n <mi>E</mi>\n <mi>n</mi>\n </msub>\n <annotation>$\\mathbb {E}_n$</annotation>\n </semantics></math>-algebras), as well as the <span></span><math>\n <semantics>\n <mi>E</mi>\n <annotation>$E$</annotation>\n </semantics></math>-theory of the configuration spaces of <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math> points on a punctured surface. We read off the corresponding Morava <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math>-theory groups, which appear in a conjecture by Ravenel. Finally, we compute the <span></span><math>\n <semantics>\n <msub>\n <mi>F</mi>\n <mi>p</mi>\n </msub>\n <annotation>$\\mathbb {F}_p$</annotation>\n </semantics></math>-homology of the space of unordered configurations of <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math> particles on a punctured surface.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.70000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We construct a spectral sequence converging to the Lubin–Tate theory, that is, Morava -theory, of unordered configuration spaces and identify its -page as the homology of a Chevalley–Eilenberg-like complex for Hecke Lie algebras. Based on this, we compute the -theory of the weight summands of iterated loop spaces of spheres (parameterizing the weight operations on -algebras), as well as the -theory of the configuration spaces of points on a punctured surface. We read off the corresponding Morava -theory groups, which appear in a conjecture by Ravenel. Finally, we compute the -homology of the space of unordered configurations of particles on a punctured surface.
我们构建了一个收敛于无序配置空间的卢宾-塔特理论(即莫拉瓦 E $E$ -理论)的谱序列,并将其 E 2 ${\mathrm{E}^2}$ -页确定为赫克李代数的切瓦利-艾伦伯格类复数的同调。在此基础上,我们计算了球面迭代环空间的权 p $p$ 和的 E $E$ 理论(参数化了 E n $\mathbb {E}_n$ -代数的权 p $p$ 运算),以及穿刺面上 p $p$ 点的配置空间的 E $E$ 理论。我们读出了相应的莫拉瓦 K $K$ 理论群,它们出现在拉文内尔的一个猜想中。最后,我们计算了穿刺面上 p $p$ 粒子无序配置空间的 F p $\mathbb {F}_p$ -同调。