Zbigniew Pater, Tomasz Bulzak, Janusz Tomczak, Xuedao Shu, Yingxiang Xia
{"title":"Formation of concavities on the ends of parts manufactured on CNC skew rolling mills","authors":"Zbigniew Pater, Tomasz Bulzak, Janusz Tomczak, Xuedao Shu, Yingxiang Xia","doi":"10.1007/s43452-024-01070-w","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the problem of concavity formation on the ends of parts manufactured on CNC skew rolling mills. Numerical modeling and Taguchi method were used to determine the effects of the main parameters of skew rolling (i.e., forming angle, skew angle, reduction ratio, temperature, steel grade, dimeter ratio, velocity ratio) on the depth of concavities formed on the product ends. The simulations showed that the only parameter to have a significant impact on the concavity depth was the reduction ratio. The FEM results were then used to establish equations for calculating concavity depth and allowance for excess material with concavity. For more universality, the established equations took into account the billet diameter. The experimental validation showed high agreement between the numerical and the experimental concavity depths.</p></div>","PeriodicalId":55474,"journal":{"name":"Archives of Civil and Mechanical Engineering","volume":"25 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43452-024-01070-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Civil and Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s43452-024-01070-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the problem of concavity formation on the ends of parts manufactured on CNC skew rolling mills. Numerical modeling and Taguchi method were used to determine the effects of the main parameters of skew rolling (i.e., forming angle, skew angle, reduction ratio, temperature, steel grade, dimeter ratio, velocity ratio) on the depth of concavities formed on the product ends. The simulations showed that the only parameter to have a significant impact on the concavity depth was the reduction ratio. The FEM results were then used to establish equations for calculating concavity depth and allowance for excess material with concavity. For more universality, the established equations took into account the billet diameter. The experimental validation showed high agreement between the numerical and the experimental concavity depths.
期刊介绍:
Archives of Civil and Mechanical Engineering (ACME) publishes both theoretical and experimental original research articles which explore or exploit new ideas and techniques in three main areas: structural engineering, mechanics of materials and materials science.
The aim of the journal is to advance science related to structural engineering focusing on structures, machines and mechanical systems. The journal also promotes advancement in the area of mechanics of materials, by publishing most recent findings in elasticity, plasticity, rheology, fatigue and fracture mechanics.
The third area the journal is concentrating on is materials science, with emphasis on metals, composites, etc., their structures and properties as well as methods of evaluation.
In addition to research papers, the Editorial Board welcomes state-of-the-art reviews on specialized topics. All such articles have to be sent to the Editor-in-Chief before submission for pre-submission review process. Only articles approved by the Editor-in-Chief in pre-submission process can be submitted to the journal for further processing. Approval in pre-submission stage doesn''t guarantee acceptance for publication as all papers are subject to a regular referee procedure.