Multiplication Operators on Generalized Orlicz Spaces Associated to Banach Function Spaces

IF 1.4 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES
Büsra Aris, Serap Öztop, Seyyed Mohammad Tabatabaie, Badik Hüseyin Uysal, Rüya Üster
{"title":"Multiplication Operators on Generalized Orlicz Spaces Associated to Banach Function Spaces","authors":"Büsra Aris,&nbsp;Serap Öztop,&nbsp;Seyyed Mohammad Tabatabaie,&nbsp;Badik Hüseyin Uysal,&nbsp;Rüya Üster","doi":"10.1007/s40995-024-01723-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study multiplication operators on generalized Orlicz spaces <span>\\(X^\\Phi\\)</span> associated to a Banach function space <i>X</i>, where <span>\\(\\Phi\\)</span> is a Young function, and give some characterization of them to be well-defined and bounded. Also, we present some sufficient and necessary conditions for such operators to be compact or invertible. Moreover, we find the essential norm of a multiplication operator on <span>\\(X^\\Phi\\)</span> while the context measure space is discrete. Many results of this paper cover known Banach function spaces related to Orlicz one.</p></div>","PeriodicalId":600,"journal":{"name":"Iranian Journal of Science and Technology, Transactions A: Science","volume":"48 6","pages":"1489 - 1497"},"PeriodicalIF":1.4000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology, Transactions A: Science","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s40995-024-01723-8","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study multiplication operators on generalized Orlicz spaces \(X^\Phi\) associated to a Banach function space X, where \(\Phi\) is a Young function, and give some characterization of them to be well-defined and bounded. Also, we present some sufficient and necessary conditions for such operators to be compact or invertible. Moreover, we find the essential norm of a multiplication operator on \(X^\Phi\) while the context measure space is discrete. Many results of this paper cover known Banach function spaces related to Orlicz one.

与巴拿赫函数空间相关的广义奥立兹空间上的乘法算子
在本文中,我们研究了与巴纳赫函数空间 X 相关的广义奥利奇空间 \(X^\Phi\) 上的乘法算子,其中 \(\Phi\) 是一个杨函数,并给出了它们定义明确且有界的一些特征。同时,我们还提出了此类算子紧凑或可反的充分必要条件。此外,我们还找到了上下文度量空间离散时 \(X^\Phi\) 上乘法算子的基本规范。本文的许多结果涵盖了与奥立兹函数空间相关的已知巴拿赫函数空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.00
自引率
5.90%
发文量
122
审稿时长
>12 weeks
期刊介绍: The aim of this journal is to foster the growth of scientific research among Iranian scientists and to provide a medium which brings the fruits of their research to the attention of the world’s scientific community. The journal publishes original research findings – which may be theoretical, experimental or both - reviews, techniques, and comments spanning all subjects in the field of basic sciences, including Physics, Chemistry, Mathematics, Statistics, Biology and Earth Sciences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信