Development of a sensor for liquid film thickness measurements during annular flow in microchannels

IF 2.3 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Victor Eduardo Corte Baptistella, Zhaorui Guo, Minhyeok Lee, Gherhardt Ribatski, Yuji Suzuki
{"title":"Development of a sensor for liquid film thickness measurements during annular flow in microchannels","authors":"Victor Eduardo Corte Baptistella,&nbsp;Zhaorui Guo,&nbsp;Minhyeok Lee,&nbsp;Gherhardt Ribatski,&nbsp;Yuji Suzuki","doi":"10.1007/s00348-024-03902-0","DOIUrl":null,"url":null,"abstract":"<div><p>A conductance-based sensor to measure liquid film thickness during annular two-phase flows in microchannels has been developed in the present study. The liquid film plays an important role on the characterization of two-phase annular flows. The mean thickness and the presence of interfacial waves influence the heat transfer rate, critical heat flux and pressure drop. The proposed sensor has a ring-shaped design and targets the measurement of films thinner than 50 µm in order to provide detailed information on the liquid film behavior during wall dryout events. It is fabricated on a TEMPAX wafer with micro-electro-mechanical systems (MEMS) technologies. The performance of the prototype device is assessed by using aqueous solutions of known conductivity and imposing liquid films with prescribed thicknesses above the sensor. The effects of the geometrical parameters on the sensor behavior are discussed with the aid of numerical simulation and experimental results. It is found that increasing the size of the electrodes increases the measured electrical signals, while increasing the spacing between the electrodes decreases the measured signal.</p></div>","PeriodicalId":554,"journal":{"name":"Experiments in Fluids","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experiments in Fluids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00348-024-03902-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A conductance-based sensor to measure liquid film thickness during annular two-phase flows in microchannels has been developed in the present study. The liquid film plays an important role on the characterization of two-phase annular flows. The mean thickness and the presence of interfacial waves influence the heat transfer rate, critical heat flux and pressure drop. The proposed sensor has a ring-shaped design and targets the measurement of films thinner than 50 µm in order to provide detailed information on the liquid film behavior during wall dryout events. It is fabricated on a TEMPAX wafer with micro-electro-mechanical systems (MEMS) technologies. The performance of the prototype device is assessed by using aqueous solutions of known conductivity and imposing liquid films with prescribed thicknesses above the sensor. The effects of the geometrical parameters on the sensor behavior are discussed with the aid of numerical simulation and experimental results. It is found that increasing the size of the electrodes increases the measured electrical signals, while increasing the spacing between the electrodes decreases the measured signal.

Abstract Image

开发用于测量微通道环形流动过程中液膜厚度的传感器
本研究开发了一种基于电导的传感器,用于测量微通道环形两相流中的液膜厚度。液膜在表征两相环形流动中起着重要作用。平均厚度和界面波的存在会影响传热速率、临界热通量和压降。拟议的传感器采用环形设计,以测量厚度小于 50 µm 的薄膜为目标,从而提供关于壁面干化过程中液膜行为的详细信息。它采用微机电系统 (MEMS) 技术在 TEMPAX 晶圆上制造而成。通过使用已知电导率的水溶液和在传感器上方施加规定厚度的液膜,对原型设备的性能进行了评估。借助数值模拟和实验结果,讨论了几何参数对传感器行为的影响。结果发现,增大电极尺寸会增加测量到的电信号,而增大电极间距则会减少测量到的电信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Experiments in Fluids
Experiments in Fluids 工程技术-工程:机械
CiteScore
5.10
自引率
12.50%
发文量
157
审稿时长
3.8 months
期刊介绍: Experiments in Fluids examines the advancement, extension, and improvement of new techniques of flow measurement. The journal also publishes contributions that employ existing experimental techniques to gain an understanding of the underlying flow physics in the areas of turbulence, aerodynamics, hydrodynamics, convective heat transfer, combustion, turbomachinery, multi-phase flows, and chemical, biological and geological flows. In addition, readers will find papers that report on investigations combining experimental and analytical/numerical approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信