Tunable slow photon effect and local surface plasmon in Ag-immobilized TiO2 inverse opal films for enhancing pollutant photodegradation†

IF 5.2 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Thi Kim Ngan Nguyen, Fabien Grasset, Satoshi Ishii, Hiroshi Fudouzi and Tetsuo Uchikoshi
{"title":"Tunable slow photon effect and local surface plasmon in Ag-immobilized TiO2 inverse opal films for enhancing pollutant photodegradation†","authors":"Thi Kim Ngan Nguyen, Fabien Grasset, Satoshi Ishii, Hiroshi Fudouzi and Tetsuo Uchikoshi","doi":"10.1039/D4MA00807C","DOIUrl":null,"url":null,"abstract":"<p >Plasmonic silver-decorated TiO<small><sub>2</sub></small> inverse opal has shown an interesting potential for photocatalysis owing to its physically tunable optical absorbance, highly active area, and flexible fabrication. In this study, electrophoretic deposition was used as a key technique to overcome the disadvantages of traditional inverse opal (IO)-fabricating methods, resulting in high reproducibility, chemical stability, and periodic area. The use of IO structural engineering, beneficially delocalizing and enhancing absorbed visible light, accounted for 46% of the total solar light, leading to the enhancement of the localized surface plasmonic resonance (LSPR) hot electrons of Ag NPs and an enhanced local electromagnetic (EM) field for the formation of photogenerated electrons on TiO<small><sub>2</sub></small>. These enhancements in Ag-deposited TiO<small><sub>2</sub></small> IO promoted the excellent photocatalytic kinetic constant of methylene blue degradation around 17 × 10<small><sup>−3</sup></small> min<small><sup>−1</sup></small>, responding to tunable optical absorption at the stopband edge of TiO<small><sub>2</sub></small> IO containing 288-nm sized pores and low absorbance of Ag in the overlapped band. The explanation for the enhanced photocatalytic mechanism was studied based on high Ag deposition density, decrease in photocurrent, increase in electron lifetime in electrolytes, and the contribution of a slow photon effect to these characteristics. The proposed photocatalysis mechanism concerned the enhancement of EM-generated electrons on TiO<small><sub>2</sub></small> that immigrate to the Ag surface for photoreduction while photooxidation occurred at the TiO<small><sub>2</sub></small> surface by the holes. This study provides an interesting strategy to improve the photocatalysis of semiconductor–metal composite systems.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 21","pages":" 8615-8628"},"PeriodicalIF":5.2000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ma/d4ma00807c?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ma/d4ma00807c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Plasmonic silver-decorated TiO2 inverse opal has shown an interesting potential for photocatalysis owing to its physically tunable optical absorbance, highly active area, and flexible fabrication. In this study, electrophoretic deposition was used as a key technique to overcome the disadvantages of traditional inverse opal (IO)-fabricating methods, resulting in high reproducibility, chemical stability, and periodic area. The use of IO structural engineering, beneficially delocalizing and enhancing absorbed visible light, accounted for 46% of the total solar light, leading to the enhancement of the localized surface plasmonic resonance (LSPR) hot electrons of Ag NPs and an enhanced local electromagnetic (EM) field for the formation of photogenerated electrons on TiO2. These enhancements in Ag-deposited TiO2 IO promoted the excellent photocatalytic kinetic constant of methylene blue degradation around 17 × 10−3 min−1, responding to tunable optical absorption at the stopband edge of TiO2 IO containing 288-nm sized pores and low absorbance of Ag in the overlapped band. The explanation for the enhanced photocatalytic mechanism was studied based on high Ag deposition density, decrease in photocurrent, increase in electron lifetime in electrolytes, and the contribution of a slow photon effect to these characteristics. The proposed photocatalysis mechanism concerned the enhancement of EM-generated electrons on TiO2 that immigrate to the Ag surface for photoreduction while photooxidation occurred at the TiO2 surface by the holes. This study provides an interesting strategy to improve the photocatalysis of semiconductor–metal composite systems.

Abstract Image

用于增强污染物光降解的 Ag-imobilized TiO2 反蛋白石薄膜中的可调谐慢光子效应和局部表面等离子体
等离子体银装饰二氧化钛反蛋白石因其物理可调的光吸收率、高活性面积和灵活的制造方法,在光催化方面显示出了令人感兴趣的潜力。本研究将电泳沉积作为一项关键技术,克服了传统反蛋白石(IO)制造方法的缺点,从而获得了高可重复性、化学稳定性和周期性面积。利用 IO 结构工程,可有效地分散和增强吸收的可见光(占太阳光总量的 46%),从而增强 Ag NPs 的局部表面等离子体共振(LSPR)热电子,并增强局部电磁(EM)场,以便在 TiO2 上形成光生电子。银沉积 TiO2 IO 的这些增强促进了亚甲基蓝降解的出色光催化动力学常数,约为 17 × 10-3 min-1,这与含有 288 nm 大小孔隙的 TiO2 IO 的止带边缘的可调光吸收和重叠带中银的低吸收率有关。根据高银离子沉积密度、光电流降低、电子在电解质中的寿命延长以及慢光子效应对这些特性的贡献,研究了光催化机制增强的原因。所提出的光催化机制涉及增强电磁在二氧化钛上产生的电子,这些电子迁移到银表面进行光还原,而空穴则在二氧化钛表面进行光氧化。这项研究为改善半导体-金属复合系统的光催化提供了一种有趣的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Advances
Materials Advances MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.60
自引率
2.00%
发文量
665
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信