Audio Mamba: Bidirectional State Space Model for Audio Representation Learning

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Mehmet Hamza Erol;Arda Senocak;Jiu Feng;Joon Son Chung
{"title":"Audio Mamba: Bidirectional State Space Model for Audio Representation Learning","authors":"Mehmet Hamza Erol;Arda Senocak;Jiu Feng;Joon Son Chung","doi":"10.1109/LSP.2024.3483009","DOIUrl":null,"url":null,"abstract":"Transformers have rapidly become the preferred choice for audio classification, surpassing methods based on CNNs. However, Audio Spectrogram Transformers (ASTs) exhibit quadratic scaling due to self-attention. The removal of this quadratic self-attention cost presents an appealing direction. Recently, state space models (SSMs), such as Mamba, have demonstrated potential in language and vision tasks in this regard. In this study, we explore whether reliance on self-attention is necessary for audio classification tasks. By introducing Audio Mamba (AuM), the first self-attention-free, purely SSM-based model for audio classification, we aim to address this question. We evaluate AuM on various audio datasets - comprising six different benchmarks - where it achieves comparable or better performance compared to well-established AST model.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"31 ","pages":"2975-2979"},"PeriodicalIF":3.2000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10720871/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Transformers have rapidly become the preferred choice for audio classification, surpassing methods based on CNNs. However, Audio Spectrogram Transformers (ASTs) exhibit quadratic scaling due to self-attention. The removal of this quadratic self-attention cost presents an appealing direction. Recently, state space models (SSMs), such as Mamba, have demonstrated potential in language and vision tasks in this regard. In this study, we explore whether reliance on self-attention is necessary for audio classification tasks. By introducing Audio Mamba (AuM), the first self-attention-free, purely SSM-based model for audio classification, we aim to address this question. We evaluate AuM on various audio datasets - comprising six different benchmarks - where it achieves comparable or better performance compared to well-established AST model.
音频曼巴用于音频表征学习的双向状态空间模型
变换器已迅速成为音频分类的首选,超过了基于 CNN 的方法。然而,音频频谱图变换器(AST)会因自关注而产生二次缩放。消除这种二次自注意成本是一个很有吸引力的方向。最近,状态空间模型(SSM),如 Mamba,在语言和视觉任务中展示了这方面的潜力。在本研究中,我们将探讨在音频分类任务中是否有必要依赖自我注意。通过引入 Audio Mamba (AuM),我们旨在解决这个问题,AuM 是第一个不依赖自我注意力、纯粹基于 SSM 的音频分类模型。我们在各种音频数据集(包括六个不同的基准)上对 AuM 进行了评估,结果表明它与成熟的 AST 模型相比,性能相当甚至更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信