{"title":"Variational Signal Separation for Automotive Radar Interference Mitigation","authors":"Mate Toth;Erik Leitinger;Klaus Witrisal","doi":"10.1109/TRS.2024.3477353","DOIUrl":null,"url":null,"abstract":"Algorithms for mutual interference mitigation and object parameter estimation are a key enabler for automotive applications of frequency-modulated continuous-wave (FMCW) radar. In this article, we introduce a signal separation method to detect and estimate radar object parameters while jointly estimating and successively canceling the interference signal. The underlying signal model poses a challenge since both the coherent radar echo and the noncoherent interference influenced by individual multipath propagation channels must be considered. Under certain assumptions, the model is described as a superposition of multipath channels weighted by parametric interference chirp envelopes. Inspired by sparse Bayesian learning (SBL), we employ an augmented probabilistic model that uses a hierarchical gamma-Gaussian prior model for each multipath channel. Based on this, an iterative inference algorithm is derived using the variational expectation-maximization (EM) methodology. The algorithm is statistically evaluated in terms of object parameter estimation accuracy and robustness, indicating that it is fundamentally capable of achieving the Cramer-Rao lower bound (CRLB) with respect to the accuracy of object estimates and it closely follows the radar performance achieved when no interference is present.","PeriodicalId":100645,"journal":{"name":"IEEE Transactions on Radar Systems","volume":"2 ","pages":"1007-1026"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10711887","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radar Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10711887/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Algorithms for mutual interference mitigation and object parameter estimation are a key enabler for automotive applications of frequency-modulated continuous-wave (FMCW) radar. In this article, we introduce a signal separation method to detect and estimate radar object parameters while jointly estimating and successively canceling the interference signal. The underlying signal model poses a challenge since both the coherent radar echo and the noncoherent interference influenced by individual multipath propagation channels must be considered. Under certain assumptions, the model is described as a superposition of multipath channels weighted by parametric interference chirp envelopes. Inspired by sparse Bayesian learning (SBL), we employ an augmented probabilistic model that uses a hierarchical gamma-Gaussian prior model for each multipath channel. Based on this, an iterative inference algorithm is derived using the variational expectation-maximization (EM) methodology. The algorithm is statistically evaluated in terms of object parameter estimation accuracy and robustness, indicating that it is fundamentally capable of achieving the Cramer-Rao lower bound (CRLB) with respect to the accuracy of object estimates and it closely follows the radar performance achieved when no interference is present.