Pixel-Wise Localization of Concealed Objects on Millimeter-Wave Radar Images Using Deep Learning

Mahshid Asri;Rahul Chowdhury;Allison Care;David Femi Lamptey;Ann Morgenthaler;Octavia Camps;Carey M. Rappaport
{"title":"Pixel-Wise Localization of Concealed Objects on Millimeter-Wave Radar Images Using Deep Learning","authors":"Mahshid Asri;Rahul Chowdhury;Allison Care;David Femi Lamptey;Ann Morgenthaler;Octavia Camps;Carey M. Rappaport","doi":"10.1109/TRS.2024.3476411","DOIUrl":null,"url":null,"abstract":"Automatic detection and localization of anomalies on radar images of personnel taken at the airport security checkpoints is a necessary step of having an end-to-end automatic threat detection algorithm. This article presents two deep learning-based solutions for pixel-wise localization of body-worn anomalies. The trained 2-D and semi-supervised U-Net models can accurately detect and localize foreign objects on all body regions by producing anomaly and body masks for each input radar image.","PeriodicalId":100645,"journal":{"name":"IEEE Transactions on Radar Systems","volume":"2 ","pages":"1027-1035"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radar Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10707336/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Automatic detection and localization of anomalies on radar images of personnel taken at the airport security checkpoints is a necessary step of having an end-to-end automatic threat detection algorithm. This article presents two deep learning-based solutions for pixel-wise localization of body-worn anomalies. The trained 2-D and semi-supervised U-Net models can accurately detect and localize foreign objects on all body regions by producing anomaly and body masks for each input radar image.
利用深度学习对毫米波雷达图像上的隐蔽物体进行像素级定位
自动检测和定位机场安检站人员雷达图像上的异常点是端到端自动威胁检测算法的必要步骤。本文介绍了两种基于深度学习的解决方案,用于对随身携带的异常图像进行像素级定位。经过训练的二维和半监督 U-Net 模型可为每张输入雷达图像生成异常和人体模型,从而准确检测和定位所有人体区域的异物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信