{"title":"Learning Noise Adapters for Incremental Speech Enhancement","authors":"Ziye Yang;Xiang Song;Jie Chen;Cédric Richard;Israel Cohen","doi":"10.1109/LSP.2024.3482171","DOIUrl":null,"url":null,"abstract":"Incremental speech enhancement (ISE), with the ability to incrementally adapt to new noise domains, represents a critical yet comparatively under-investigated topic. While the regularization-based method has been proposed to solve the ISE task, it usually suffers from the dilemma wherein the gain of one domain directly entails the loss of another. To solve this issue, we propose an effective paradigm, termed Learning Noise Adapters (LNA), which significantly mitigates the catastrophic domain forgetting phenomenon in the ISE task. In our methodology, we employ a frozen pre-trained model to train and retain a domain-specific adapter for each newly encountered domain, enabling the capture of variations in feature distributions within these domains. Subsequently, our approach involves the development of an unsupervised, training-free noise selector for the inference stage, which is responsible for identifying the domains of test speech samples. A comprehensive experimental validation has substantiated the effectiveness of our approach.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10720156/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Incremental speech enhancement (ISE), with the ability to incrementally adapt to new noise domains, represents a critical yet comparatively under-investigated topic. While the regularization-based method has been proposed to solve the ISE task, it usually suffers from the dilemma wherein the gain of one domain directly entails the loss of another. To solve this issue, we propose an effective paradigm, termed Learning Noise Adapters (LNA), which significantly mitigates the catastrophic domain forgetting phenomenon in the ISE task. In our methodology, we employ a frozen pre-trained model to train and retain a domain-specific adapter for each newly encountered domain, enabling the capture of variations in feature distributions within these domains. Subsequently, our approach involves the development of an unsupervised, training-free noise selector for the inference stage, which is responsible for identifying the domains of test speech samples. A comprehensive experimental validation has substantiated the effectiveness of our approach.
增量语音增强(ISE)能够逐步适应新的噪声域,是一个重要但研究相对不足的课题。虽然已经提出了基于正则化的方法来解决 ISE 任务,但这种方法通常存在两难问题,即一个域的增益会直接导致另一个域的损失。为了解决这个问题,我们提出了一种有效的范式,即学习噪声适配器(LNA),它能显著减轻 ISE 任务中的灾难性域遗忘现象。在我们的方法中,我们采用一个冻结的预训练模型,为每个新遇到的领域训练和保留特定领域的适配器,从而捕捉这些领域内特征分布的变化。随后,我们在推理阶段开发了一种无监督、无训练的噪声选择器,负责识别测试语音样本的领域。全面的实验验证证明了我们方法的有效性。
期刊介绍:
The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.