Millimeter-Wave Radar Imaging Using Multistatic Coprime Array Configuration for Invisible Object Testing

Hiroki Mori;Ryota Sekiya
{"title":"Millimeter-Wave Radar Imaging Using Multistatic Coprime Array Configuration for Invisible Object Testing","authors":"Hiroki Mori;Ryota Sekiya","doi":"10.1109/TRS.2024.3471696","DOIUrl":null,"url":null,"abstract":"Some existing radar imaging apparatuses require a large number of transmitting and receiving antennas and, thus, impose stringent requirements on hardware design. In this article, we propose a millimeter-wave radar imaging method that combines multistatic radar with coprime measurements, to significantly reduce the number of antennas and the amount of data. The proposed radar array system replaces every monostatic radar with a pair comprising a separated transmitter and receiver along with phase corrections. Since multiple receivers can simultaneously receive the reflection when a transmitter emits a signal and then efficiently create virtual subarrays obtained by coprime measurements, the proposed radar array system can further reduce the number of measurements (antennas) and the amount of data compared with the existing schemes. Our proposal is demonstrated through simulations and experiments, and the results indicate that the proposed radar array system is advantageous in implementation in terms of hardware design and data acquisition time.","PeriodicalId":100645,"journal":{"name":"IEEE Transactions on Radar Systems","volume":"2 ","pages":"1036-1047"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radar Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10701511/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Some existing radar imaging apparatuses require a large number of transmitting and receiving antennas and, thus, impose stringent requirements on hardware design. In this article, we propose a millimeter-wave radar imaging method that combines multistatic radar with coprime measurements, to significantly reduce the number of antennas and the amount of data. The proposed radar array system replaces every monostatic radar with a pair comprising a separated transmitter and receiver along with phase corrections. Since multiple receivers can simultaneously receive the reflection when a transmitter emits a signal and then efficiently create virtual subarrays obtained by coprime measurements, the proposed radar array system can further reduce the number of measurements (antennas) and the amount of data compared with the existing schemes. Our proposal is demonstrated through simulations and experiments, and the results indicate that the proposed radar array system is advantageous in implementation in terms of hardware design and data acquisition time.
利用多静态共轭阵列配置进行毫米波雷达成像,用于隐形物体测试
现有的一些雷达成像设备需要大量的发射和接收天线,因此对硬件设计提出了严格的要求。在本文中,我们提出了一种毫米波雷达成像方法,该方法将多静态雷达与共时测量相结合,大大减少了天线数量和数据量。所提出的雷达阵列系统用一对由分离的发射器和接收器组成的雷达取代了所有单静态雷达,并带有相位校正功能。由于多个接收器可在发射器发射信号时同时接收反射信号,然后通过共时测量有效地创建虚拟子阵列,因此与现有方案相比,拟议的雷达阵列系统可进一步减少测量(天线)数量和数据量。我们通过仿真和实验演示了我们的建议,结果表明,建议的雷达阵列系统在硬件设计和数据采集时间方面具有实施优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信