Minghui Zhao, Yumeng Xin, Haoyun Deng, Zhentao Zuo, Xiaoying Wang, Yanchao Bi, Ning Liu
{"title":"Object color knowledge representation occurs in the macaque brain despite the absence of a developed language system.","authors":"Minghui Zhao, Yumeng Xin, Haoyun Deng, Zhentao Zuo, Xiaoying Wang, Yanchao Bi, Ning Liu","doi":"10.1371/journal.pbio.3002863","DOIUrl":null,"url":null,"abstract":"<p><p>Animals guide their behaviors through internal representations of the world in the brain. We aimed to understand how the macaque brain stores such general world knowledge, focusing on object color knowledge. Three functional magnetic resonance imaging (fMRI) experiments were conducted in macaque monkeys: viewing chromatic and achromatic gratings, viewing grayscale images of their familiar fruits and vegetables (e.g., grayscale strawberry), and viewing true- and false-colored objects (e.g., red strawberry and green strawberry). We observed robust object knowledge representations in the color patches, especially the one located around TEO: the activity patterns could classify grayscale pictures of objects based on their memory color and response patterns in these regions could translate between chromatic grating viewing and grayscale object viewing (e.g., red grating-grayscale images of strawberry), such that classifiers trained by viewing chromatic gratings could successfully classify grayscale object images according to their memory colors. Our results showed direct positive evidence of object color memory in macaque monkeys. These results indicate the perceptually grounded knowledge representation as a conservative memory mechanism and open a new avenue to study this particular (semantic) memory representation with macaque models.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 10","pages":"e3002863"},"PeriodicalIF":9.8000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542842/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3002863","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Animals guide their behaviors through internal representations of the world in the brain. We aimed to understand how the macaque brain stores such general world knowledge, focusing on object color knowledge. Three functional magnetic resonance imaging (fMRI) experiments were conducted in macaque monkeys: viewing chromatic and achromatic gratings, viewing grayscale images of their familiar fruits and vegetables (e.g., grayscale strawberry), and viewing true- and false-colored objects (e.g., red strawberry and green strawberry). We observed robust object knowledge representations in the color patches, especially the one located around TEO: the activity patterns could classify grayscale pictures of objects based on their memory color and response patterns in these regions could translate between chromatic grating viewing and grayscale object viewing (e.g., red grating-grayscale images of strawberry), such that classifiers trained by viewing chromatic gratings could successfully classify grayscale object images according to their memory colors. Our results showed direct positive evidence of object color memory in macaque monkeys. These results indicate the perceptually grounded knowledge representation as a conservative memory mechanism and open a new avenue to study this particular (semantic) memory representation with macaque models.
期刊介绍:
PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions.
The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public.
PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.