{"title":"High performance and nearly wake-up free Hf<sub>0.5</sub>Zr<sub>0.5</sub>O<sub>2</sub>ferroelectric capacitor realized by middle layer strategy with BEOL compatibility.","authors":"Yin-Chi Liu, Gen-Ran Xie, Ji-Ning Yang, Hao Zhang, Dmitriy Anatolyevich Golosov, Chenjie Gu, Bao Zhu, Xiaohan Wu, Hong-Liang Lu, Shi-Jin Ding, Wenjun Liu","doi":"10.1088/1361-6528/ad8bcc","DOIUrl":null,"url":null,"abstract":"<p><p>Hf<sub>0.5</sub>Zr<sub>0.5</sub>O<sub>2</sub>(HZO) has drawn great attention owing to its excellent ferroelectricity, sub-10 nm scalability, and CMOS compatibility. With regard to increasingly restrict thermal budget and power consumption, conventional HZO films need further optimization to meet these demands. Here, we propose a middle layer (ML) strategy aiming to enhance ferroelectricity and inhibit wake-up effect of ferroelectric (FE) capacitors compatible with back-end of line under the low operating electric field. ZrO<sub>2</sub>, HfO<sub>2</sub>, and Al<sub>2</sub>O<sub>3</sub>were integrated into HZO film as different MLs. Among them, the device with ZrO<sub>2</sub>ML achieves the excellent double remnant polarization (2<i>P</i><sub>r</sub>) of 41.7<i>μ</i>C cm<sup>-2</sup>under the operating electric field of 2 MV cm<sup>-1</sup>. Moreover, ultralow wake-up ratios of around 0.08 and 0.05 were observed under 2 MV cm<sup>-1</sup>and 3 MV cm<sup>-1</sup>, respectively. Additionally, the FE capacitor with ZrO<sub>2</sub>ML demonstrated an enhanced reliability characterizations, including a stable 2<i>P</i><sub>r</sub>of 40.7<i>μ</i>C cm<sup>-2</sup>after 4.3 × 10<sup>9</sup>cycles. This work provides the perspective to optimize both the ferroelectricity and reliability, while maintains the ultralow wake-up ratio in HfO<sub>2</sub>-based FE through ML engineering.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/ad8bcc","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Hf0.5Zr0.5O2(HZO) has drawn great attention owing to its excellent ferroelectricity, sub-10 nm scalability, and CMOS compatibility. With regard to increasingly restrict thermal budget and power consumption, conventional HZO films need further optimization to meet these demands. Here, we propose a middle layer (ML) strategy aiming to enhance ferroelectricity and inhibit wake-up effect of ferroelectric (FE) capacitors compatible with back-end of line under the low operating electric field. ZrO2, HfO2, and Al2O3were integrated into HZO film as different MLs. Among them, the device with ZrO2ML achieves the excellent double remnant polarization (2Pr) of 41.7μC cm-2under the operating electric field of 2 MV cm-1. Moreover, ultralow wake-up ratios of around 0.08 and 0.05 were observed under 2 MV cm-1and 3 MV cm-1, respectively. Additionally, the FE capacitor with ZrO2ML demonstrated an enhanced reliability characterizations, including a stable 2Prof 40.7μC cm-2after 4.3 × 109cycles. This work provides the perspective to optimize both the ferroelectricity and reliability, while maintains the ultralow wake-up ratio in HfO2-based FE through ML engineering.
期刊介绍:
The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.