Gut microbiota dysbiosis-mediated ceramides elevation contributes to corticosterone-induced depression by impairing mitochondrial function.

IF 7.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Guanhao Wang, Lining Cao, Shuanqing Li, Meihui Zhang, Yingqi Li, Jinjin Duan, You Li, Zhangsen Hu, Jiaan Wu, Jianbo Ni, Danmei Lan, Tianming Li, Jianfeng Lu
{"title":"Gut microbiota dysbiosis-mediated ceramides elevation contributes to corticosterone-induced depression by impairing mitochondrial function.","authors":"Guanhao Wang, Lining Cao, Shuanqing Li, Meihui Zhang, Yingqi Li, Jinjin Duan, You Li, Zhangsen Hu, Jiaan Wu, Jianbo Ni, Danmei Lan, Tianming Li, Jianfeng Lu","doi":"10.1038/s41522-024-00582-w","DOIUrl":null,"url":null,"abstract":"<p><p>The role of gut microbiota (GM) dysbiosis in the pathogenesis of depression has received widespread attention, but the mechanism remains elusive. Corticosterone (CORT)-treated mice showed depression-like behaviors, reduced hippocampal neurogenesis, and altered composition of the GM. Fecal microbial transplantation from CORT-treated mice transferred depression-like phenotypes and their dominant GM to the recipients. Fecal metabolic profiling exposed remarkable increase of gut ceramides in CORT-treated and recipient mice. Oral gavage with Bifidobacterium pseudolongum and Lactobacillus reuteri could induce elevations of gut ceramides in mice. Ceramides-treated mice showed depressive-like phenotypes, significant downregulation of oxidative phosphorylation-associated genes, and hippocampal mitochondrial dysfunction. Our study demonstrated a link between chronic exposure to CORT and its impact on GM composition, which induces ceramides accumulation, ultimately leading to hippocampal mitochondrial dysfunction. This cascade of events plays a critical role in reducing adult hippocampal neurogenesis and is strongly associated with the development of depression-like behaviors.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"10 1","pages":"111"},"PeriodicalIF":7.8000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11519513/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Biofilms and Microbiomes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41522-024-00582-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The role of gut microbiota (GM) dysbiosis in the pathogenesis of depression has received widespread attention, but the mechanism remains elusive. Corticosterone (CORT)-treated mice showed depression-like behaviors, reduced hippocampal neurogenesis, and altered composition of the GM. Fecal microbial transplantation from CORT-treated mice transferred depression-like phenotypes and their dominant GM to the recipients. Fecal metabolic profiling exposed remarkable increase of gut ceramides in CORT-treated and recipient mice. Oral gavage with Bifidobacterium pseudolongum and Lactobacillus reuteri could induce elevations of gut ceramides in mice. Ceramides-treated mice showed depressive-like phenotypes, significant downregulation of oxidative phosphorylation-associated genes, and hippocampal mitochondrial dysfunction. Our study demonstrated a link between chronic exposure to CORT and its impact on GM composition, which induces ceramides accumulation, ultimately leading to hippocampal mitochondrial dysfunction. This cascade of events plays a critical role in reducing adult hippocampal neurogenesis and is strongly associated with the development of depression-like behaviors.

肠道微生物群失调介导的神经酰胺升高通过损害线粒体功能导致皮质酮诱发抑郁症。
肠道微生物群(GM)菌群失调在抑郁症发病机制中的作用已受到广泛关注,但其机制仍难以捉摸。皮质酮(CORT)处理的小鼠表现出类似抑郁症的行为,海马神经发生减少,肠道微生物群的组成也发生了改变。将 CORT 处理过的小鼠的粪便微生物移植到接受者体内,可将抑郁样表型及其占优势的基因组转移到接受者体内。粪便代谢分析表明,CORT 处理过的小鼠和受体小鼠的肠道神经酰胺显著增加。口服假双歧杆菌和吕特氏乳杆菌可诱导小鼠肠道神经酰胺的增加。神经酰胺处理的小鼠表现出抑郁样表型、氧化磷酸化相关基因显著下调和海马线粒体功能障碍。我们的研究表明,长期暴露于CORT及其对GM成分的影响之间存在联系,GM成分会诱导神经酰胺的积累,最终导致海马线粒体功能障碍。这一系列事件在减少成人海马神经发生方面起着关键作用,并与抑郁症样行为的发展密切相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Biofilms and Microbiomes
npj Biofilms and Microbiomes Immunology and Microbiology-Microbiology
CiteScore
12.10
自引率
3.30%
发文量
91
审稿时长
9 weeks
期刊介绍: npj Biofilms and Microbiomes is a comprehensive platform that promotes research on biofilms and microbiomes across various scientific disciplines. The journal facilitates cross-disciplinary discussions to enhance our understanding of the biology, ecology, and communal functions of biofilms, populations, and communities. It also focuses on applications in the medical, environmental, and engineering domains. The scope of the journal encompasses all aspects of the field, ranging from cell-cell communication and single cell interactions to the microbiomes of humans, animals, plants, and natural and built environments. The journal also welcomes research on the virome, phageome, mycome, and fungome. It publishes both applied science and theoretical work. As an open access and interdisciplinary journal, its primary goal is to publish significant scientific advancements in microbial biofilms and microbiomes. The journal enables discussions that span multiple disciplines and contributes to our understanding of the social behavior of microbial biofilm populations and communities, and their impact on life, human health, and the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信