Transposable Element Diversity and Activity Patterns in Neotropical Salamanders.

IF 11 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Louis Paul Decena-Segarra, Sean M Rovito
{"title":"Transposable Element Diversity and Activity Patterns in Neotropical Salamanders.","authors":"Louis Paul Decena-Segarra, Sean M Rovito","doi":"10.1093/molbev/msae225","DOIUrl":null,"url":null,"abstract":"<p><p>Transposable elements (TEs) compose a substantial proportion of the largest eukaryotic genomes. TE diversity has been hypothesized to be negatively correlated with genome size, yet empirical demonstrations of such a relationship in a phylogenetic context are largely lacking. Furthermore, the most abundant type of TEs in genomes varies across groups, and it is not clear if there are patterns of TE activity consistent with genome size among different taxa with large genome sizes. We use low-coverage sequencing of 16 species of Neotropical salamanders, which vary ∼7-fold in genome size, to estimate TE relative abundance and diversity for each species. We also compare the divergence of copies of each TE superfamily to estimate patterns of TE activity in each species. We find a negative relationship between TE diversity and genome size, which is consistent with the hypothesis that either competition among TEs or reduced selection against ectopic recombination may result in lower diversity in the largest genomes. We also find divergent activity patterns in the largest versus the smallest genomes, suggesting that the history of TE activity may explain differences in genome size. Our results suggest that both TE diversity and relative abundance may be predictable, at least within taxonomic groups.</p>","PeriodicalId":18730,"journal":{"name":"Molecular biology and evolution","volume":" ","pages":""},"PeriodicalIF":11.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11562844/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular biology and evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/molbev/msae225","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Transposable elements (TEs) compose a substantial proportion of the largest eukaryotic genomes. TE diversity has been hypothesized to be negatively correlated with genome size, yet empirical demonstrations of such a relationship in a phylogenetic context are largely lacking. Furthermore, the most abundant type of TEs in genomes varies across groups, and it is not clear if there are patterns of TE activity consistent with genome size among different taxa with large genome sizes. We use low-coverage sequencing of 16 species of Neotropical salamanders, which vary ∼7-fold in genome size, to estimate TE relative abundance and diversity for each species. We also compare the divergence of copies of each TE superfamily to estimate patterns of TE activity in each species. We find a negative relationship between TE diversity and genome size, which is consistent with the hypothesis that either competition among TEs or reduced selection against ectopic recombination may result in lower diversity in the largest genomes. We also find divergent activity patterns in the largest versus the smallest genomes, suggesting that the history of TE activity may explain differences in genome size. Our results suggest that both TE diversity and relative abundance may be predictable, at least within taxonomic groups.

新热带蝾螈的可转座元件多样性和活动模式。
可转座元件(TE)在最大的真核生物基因组中占有很大比例。据推测,可转座元件的多样性与基因组的大小呈负相关,但在系统发育的背景下,这种关系在很大程度上缺乏经验证明。此外,基因组中最丰富的TE类型在不同类群中也不尽相同,而且目前还不清楚基因组规模较大的不同类群中是否存在与基因组规模一致的TE活动模式。我们对基因组大小相差约 7 倍的 16 种新热带蝾螈进行了低覆盖率测序,以估计每个物种的 TE 相对丰度和多样性。我们还比较了每个 TE 超家族拷贝的差异,以估计每个物种中 TE 的活动模式。我们发现 TE 多样性与基因组大小呈负相关,这与 TE 之间的竞争或异位重组选择减少可能导致最大基因组多样性降低的假设一致。我们还发现最大基因组与最小基因组的活动模式存在差异,这表明TE活动的历史可能解释了基因组大小的差异。我们的研究结果表明,至少在分类群体内,TE的多样性和相对丰度都是可以预测的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular biology and evolution
Molecular biology and evolution 生物-进化生物学
CiteScore
19.70
自引率
3.70%
发文量
257
审稿时长
1 months
期刊介绍: Molecular Biology and Evolution Journal Overview: Publishes research at the interface of molecular (including genomics) and evolutionary biology Considers manuscripts containing patterns, processes, and predictions at all levels of organization: population, taxonomic, functional, and phenotypic Interested in fundamental discoveries, new and improved methods, resources, technologies, and theories advancing evolutionary research Publishes balanced reviews of recent developments in genome evolution and forward-looking perspectives suggesting future directions in molecular evolution applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信