{"title":"Unlocking Cardioprotective Potential of Gut Microbiome: Exploring Therapeutic Strategies.","authors":"Jun Qu, Fantao Meng, Zhen Wang, Wenhao Xu","doi":"10.4014/jmb.2405.05019","DOIUrl":null,"url":null,"abstract":"<p><p>The microbial community inhabiting the human gut resembles a bustling metropolis, wherein beneficial bacteria play pivotal roles in regulating our bodily functions. These microorganisms adeptly break down resilient dietary fibers to fuel our energy, synthesize essential vitamins crucial for our well-being, and maintain the delicate balance of our immune system. Recent research indicates a potential correlation between alterations in the composition and activities of these gut microbes and the development of coronary artery disease (CAD). Consequently, scientists are delving into the intriguing realm of manipulating these gut inhabitants to potentially mitigate disease risks. Various promising strategies have emerged in this endeavor. Studies have evidenced that probiotics can mitigate inflammation and enhance the endothelial health of our blood vessels. Notably, strains such as Lactobacilli and Bifidobacteria have garnered substantial attention in both laboratory settings and clinical trials. Conversely, prebiotics exhibit anti-inflammatory properties and hold potential in managing conditions like hypertension and hypercholesterolemia. Synbiotics, which synergistically combine probiotics and prebiotics, show promise in regulating glucose metabolism and abnormal lipid profiles. However, uncertainties persist regarding postbiotics, while antibiotics are deemed unsuitable due to their potential adverse effects. On the other hand, TMAO blockers, such as 3,3-dimethyl-1-butanol, demonstrate encouraging outcomes in laboratory experiments owing to their anti-inflammatory and tissue-protective properties. Moreover, fecal transplantation, despite yielding mixed results, warrants further exploration and refinement. In this comprehensive review, we delve into the intricate interplay between the gut microbiota and CAD, shedding light on the multifaceted approaches researchers are employing to leverage this understanding for therapeutic advancements.</p>","PeriodicalId":16481,"journal":{"name":"Journal of microbiology and biotechnology","volume":"34 12","pages":"2413-2424"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microbiology and biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4014/jmb.2405.05019","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The microbial community inhabiting the human gut resembles a bustling metropolis, wherein beneficial bacteria play pivotal roles in regulating our bodily functions. These microorganisms adeptly break down resilient dietary fibers to fuel our energy, synthesize essential vitamins crucial for our well-being, and maintain the delicate balance of our immune system. Recent research indicates a potential correlation between alterations in the composition and activities of these gut microbes and the development of coronary artery disease (CAD). Consequently, scientists are delving into the intriguing realm of manipulating these gut inhabitants to potentially mitigate disease risks. Various promising strategies have emerged in this endeavor. Studies have evidenced that probiotics can mitigate inflammation and enhance the endothelial health of our blood vessels. Notably, strains such as Lactobacilli and Bifidobacteria have garnered substantial attention in both laboratory settings and clinical trials. Conversely, prebiotics exhibit anti-inflammatory properties and hold potential in managing conditions like hypertension and hypercholesterolemia. Synbiotics, which synergistically combine probiotics and prebiotics, show promise in regulating glucose metabolism and abnormal lipid profiles. However, uncertainties persist regarding postbiotics, while antibiotics are deemed unsuitable due to their potential adverse effects. On the other hand, TMAO blockers, such as 3,3-dimethyl-1-butanol, demonstrate encouraging outcomes in laboratory experiments owing to their anti-inflammatory and tissue-protective properties. Moreover, fecal transplantation, despite yielding mixed results, warrants further exploration and refinement. In this comprehensive review, we delve into the intricate interplay between the gut microbiota and CAD, shedding light on the multifaceted approaches researchers are employing to leverage this understanding for therapeutic advancements.
期刊介绍:
The Journal of Microbiology and Biotechnology (JMB) is a monthly international journal devoted to the advancement and dissemination of scientific knowledge pertaining to microbiology, biotechnology, and related academic disciplines. It covers various scientific and technological aspects of Molecular and Cellular Microbiology, Environmental Microbiology and Biotechnology, Food Biotechnology, and Biotechnology and Bioengineering (subcategories are listed below). Launched in March 1991, the JMB is published by the Korean Society for Microbiology and Biotechnology (KMB) and distributed worldwide.