Development of a New Isoxsuprine Hydrochloride-Based Hydroxylated Compound with Potent Antioxidant and Anti-Inflammatory Activities.

IF 2.5 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Chien-Yu Wu, Hsiou-Yu Ding, Tzi-Yuan Wang, Chun-Wei Liu, Jiumn-Yih Wu, Te-Sheng Chang
{"title":"Development of a New Isoxsuprine Hydrochloride-Based Hydroxylated Compound with Potent Antioxidant and Anti-Inflammatory Activities.","authors":"Chien-Yu Wu, Hsiou-Yu Ding, Tzi-Yuan Wang, Chun-Wei Liu, Jiumn-Yih Wu, Te-Sheng Chang","doi":"10.4014/jmb.2405.05031","DOIUrl":null,"url":null,"abstract":"<p><p>The scientific community actively pursuits novel compounds with biological activities. In this context, our study utilized the predicted data mining approach (PDMA), which can efficiently screen out biotransformable precursor candidates to produce new bioactive compounds. The PDMA was applied to <i>Bacillus megaterium</i> tyrosinase (<i>Bm</i>TYR) to form new bioactive hydroxyl compounds from isoxsuprine hydrochloride (isoxsuprine). The results show that isoxsuprine could be biotransformed by BmTYR to form a new compound, 3''-hydroxyisoxsuprine. 3''-Hydroxyisoxsuprine exhibited 40- fold and 10-fold higher potent antioxidant and anti-inflammation activities than the precursor, isoxsuprine. The 3''-hydroxyisoxsuprine effectively mitigates the hyperimmune response in RAW 264.7 macrophages by inhibiting the upregulation of pro-inflammatory cytokine (IL-1β and IL-6) and inflammatory enzyme COX-2 gene expression triggered by LPS stimulation. This study illustrates that PDMA is an effective strategy for screening known natural and chemical compounds and for generating new bioactive compounds through biotransformation. Our newly produced compound has potential future applications in pharmacology and biotechnology.</p>","PeriodicalId":16481,"journal":{"name":"Journal of microbiology and biotechnology","volume":"34 12","pages":"1-9"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microbiology and biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4014/jmb.2405.05031","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The scientific community actively pursuits novel compounds with biological activities. In this context, our study utilized the predicted data mining approach (PDMA), which can efficiently screen out biotransformable precursor candidates to produce new bioactive compounds. The PDMA was applied to Bacillus megaterium tyrosinase (BmTYR) to form new bioactive hydroxyl compounds from isoxsuprine hydrochloride (isoxsuprine). The results show that isoxsuprine could be biotransformed by BmTYR to form a new compound, 3''-hydroxyisoxsuprine. 3''-Hydroxyisoxsuprine exhibited 40- fold and 10-fold higher potent antioxidant and anti-inflammation activities than the precursor, isoxsuprine. The 3''-hydroxyisoxsuprine effectively mitigates the hyperimmune response in RAW 264.7 macrophages by inhibiting the upregulation of pro-inflammatory cytokine (IL-1β and IL-6) and inflammatory enzyme COX-2 gene expression triggered by LPS stimulation. This study illustrates that PDMA is an effective strategy for screening known natural and chemical compounds and for generating new bioactive compounds through biotransformation. Our newly produced compound has potential future applications in pharmacology and biotechnology.

开发具有强效抗氧化和抗炎活性的新型盐酸异舒普林羟基化合物
科学界一直在积极探索具有生物活性的新型化合物。在此背景下,我们的研究利用了预测数据挖掘方法(PDMA),该方法可有效筛选出可生物转化的候选前体,以生产新的生物活性化合物。我们将预测数据挖掘法应用于巨大芽孢杆菌酪氨酸酶(BmTYR),以盐酸异氧苏普林(isoxsuprine)为原料生成新的生物活性羟基化合物。结果表明,异氧苏普林可通过 BmTYR 的生物转化形成一种新的化合物--3''-羟基异氧苏普林。3''-羟基异氧苏普林的抗氧化和抗炎活性分别比其前体异氧苏普林高 40 倍和 10 倍。3''-hydroxyisoxsuprine 能抑制 LPS 刺激引发的促炎细胞因子(IL-1β 和 IL-6)和炎症酶 COX-2 基因表达的上调,从而有效减轻 RAW 264.7 巨噬细胞的高免疫反应。这项研究表明,PDMA 是筛选已知天然化合物和化学物质以及通过生物转化生成新生物活性化合物的有效策略。我们新生产的化合物在药理学和生物技术领域具有潜在的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of microbiology and biotechnology
Journal of microbiology and biotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-MICROBIOLOGY
CiteScore
5.50
自引率
3.60%
发文量
151
审稿时长
2 months
期刊介绍: The Journal of Microbiology and Biotechnology (JMB) is a monthly international journal devoted to the advancement and dissemination of scientific knowledge pertaining to microbiology, biotechnology, and related academic disciplines. It covers various scientific and technological aspects of Molecular and Cellular Microbiology, Environmental Microbiology and Biotechnology, Food Biotechnology, and Biotechnology and Bioengineering (subcategories are listed below). Launched in March 1991, the JMB is published by the Korean Society for Microbiology and Biotechnology (KMB) and distributed worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信