{"title":"Isolation of Heavy Metal-Tolerant and Anti-Phytopathogenic Plant Growth-Promoting Bacteria from Soils.","authors":"Soo Yeon Lee, Kyung-Suk Cho","doi":"10.4014/jmb.2407.07013","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, by isolating multifunctional soil bacteria that can promote plant development, resist heavy metals, exhibit anti-phytopathogenic action against plant diseases, and produce extracellular enzymes, we hope to improve the effectiveness of phytoremediation techniques. To isolate multifunctional soil bacteria, we used soils with diverse characteristics as isolation sources. To look into the diversity and structural traits of the bacterial communities, We conducted amplicon sequencing of the 16S rRNA gene on five types of soils and predicted functional genes using Tax4Fun2. The isolated bacteria were evaluated for their multifunctional capabilities, including heavy metal tolerance, plant growth promotion, anti-phytopathogenic activity, and extracellular enzyme activity. The genes related to plant growth promotion and anti-phytopathogenic activity were most abundant in forest and paddy soils. <i>Burkholderia</i> sp. FZ3 and FZ5 demonstrated excellent heavy metal resistance (≤ 1 mM Cd and ≤ 10 mM Zn), <i>Pantoea</i> sp. FC24 exhibited the highest protease activity (24.90 μmol tyrosine·g-DCW-<sup>1</sup>·h<sup>-1</sup>), and <i>Enterobacter</i> sp. PC20 showed superior plant growth promotion, especially in siderophore production. The multifunctional bacteria isolated using traditional methods included three strains (FC24, FZ3, and FZ5) from the forest and one strain (PC20) from paddy field soil. These results indicate that, for the isolation of beneficial soil microorganisms, utilizing target gene information obtained from isolation sources and subsequently exploring target microorganisms is a valuable strategy.</p>","PeriodicalId":16481,"journal":{"name":"Journal of microbiology and biotechnology","volume":"34 11","pages":"1-14"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microbiology and biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4014/jmb.2407.07013","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, by isolating multifunctional soil bacteria that can promote plant development, resist heavy metals, exhibit anti-phytopathogenic action against plant diseases, and produce extracellular enzymes, we hope to improve the effectiveness of phytoremediation techniques. To isolate multifunctional soil bacteria, we used soils with diverse characteristics as isolation sources. To look into the diversity and structural traits of the bacterial communities, We conducted amplicon sequencing of the 16S rRNA gene on five types of soils and predicted functional genes using Tax4Fun2. The isolated bacteria were evaluated for their multifunctional capabilities, including heavy metal tolerance, plant growth promotion, anti-phytopathogenic activity, and extracellular enzyme activity. The genes related to plant growth promotion and anti-phytopathogenic activity were most abundant in forest and paddy soils. Burkholderia sp. FZ3 and FZ5 demonstrated excellent heavy metal resistance (≤ 1 mM Cd and ≤ 10 mM Zn), Pantoea sp. FC24 exhibited the highest protease activity (24.90 μmol tyrosine·g-DCW-1·h-1), and Enterobacter sp. PC20 showed superior plant growth promotion, especially in siderophore production. The multifunctional bacteria isolated using traditional methods included three strains (FC24, FZ3, and FZ5) from the forest and one strain (PC20) from paddy field soil. These results indicate that, for the isolation of beneficial soil microorganisms, utilizing target gene information obtained from isolation sources and subsequently exploring target microorganisms is a valuable strategy.
期刊介绍:
The Journal of Microbiology and Biotechnology (JMB) is a monthly international journal devoted to the advancement and dissemination of scientific knowledge pertaining to microbiology, biotechnology, and related academic disciplines. It covers various scientific and technological aspects of Molecular and Cellular Microbiology, Environmental Microbiology and Biotechnology, Food Biotechnology, and Biotechnology and Bioengineering (subcategories are listed below). Launched in March 1991, the JMB is published by the Korean Society for Microbiology and Biotechnology (KMB) and distributed worldwide.