{"title":"Bazi Bushen attenuates osteoporosis in SAMP6 mice by regulating PI3K-AKT and apoptosis pathways","authors":"Zhe Xu, Zeyu Zhang, Huifang Zhou, Shan Lin, Boyang Gong, Zhaodong Li, Shuwu Zhao, Yunlong Hou, Yanfei Peng, Yuhong Bian","doi":"10.1111/jcmm.70161","DOIUrl":null,"url":null,"abstract":"<p>Osteoporosis (OP), a systemic skeletal disease, is characterized by low bone mass, bone tissue degradation and bone microarchitecture disturbance. Bazi Bushen, a Chinese patented medicine, has been demonstrated to be effective in attenuating OP, but the pharmacological mechanism remains predominantly unclear. In this study, the senescence-accelerated mouse prone 6 (SAMP6) model was used to explore bone homeostasis and treated intragastrically for 9 weeks with Bazi Bushen. In vivo experiments showed that Bazi Bushen treatment not only upregulated the levels of bone mineral density and bone mineral content but also increased the content of RUNX2 and OSX. Furthermore, the primary culture of bone mesenchymal stem cells (BMSCs) in SAMP6 mice was used to verify the effects of Bazi Bushen on the balance of differentiation between osteoblasts and adipocytes, as well as ROS and aging levels. Finally, the pharmacological mechanism of Bazi Bushen in attenuating OP was investigated through network pharmacology and experimental verification, and we found that Bazi Bushen could significantly orchestrate bone homeostasis and attenuate the progression of OP by stimulating PI3K-Akt and inhibiting apoptosis. In summary, our work sheds light on the first evidence that Bazi Bushen attenuates OP by regulating PI3K-AKT and apoptosis pathways to orchestrate bone homeostasis.</p>","PeriodicalId":101321,"journal":{"name":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","volume":"28 20","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jcmm.70161","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jcmm.70161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Osteoporosis (OP), a systemic skeletal disease, is characterized by low bone mass, bone tissue degradation and bone microarchitecture disturbance. Bazi Bushen, a Chinese patented medicine, has been demonstrated to be effective in attenuating OP, but the pharmacological mechanism remains predominantly unclear. In this study, the senescence-accelerated mouse prone 6 (SAMP6) model was used to explore bone homeostasis and treated intragastrically for 9 weeks with Bazi Bushen. In vivo experiments showed that Bazi Bushen treatment not only upregulated the levels of bone mineral density and bone mineral content but also increased the content of RUNX2 and OSX. Furthermore, the primary culture of bone mesenchymal stem cells (BMSCs) in SAMP6 mice was used to verify the effects of Bazi Bushen on the balance of differentiation between osteoblasts and adipocytes, as well as ROS and aging levels. Finally, the pharmacological mechanism of Bazi Bushen in attenuating OP was investigated through network pharmacology and experimental verification, and we found that Bazi Bushen could significantly orchestrate bone homeostasis and attenuate the progression of OP by stimulating PI3K-Akt and inhibiting apoptosis. In summary, our work sheds light on the first evidence that Bazi Bushen attenuates OP by regulating PI3K-AKT and apoptosis pathways to orchestrate bone homeostasis.
期刊介绍:
The Journal of Cellular and Molecular Medicine serves as a bridge between physiology and cellular medicine, as well as molecular biology and molecular therapeutics. With a 20-year history, the journal adopts an interdisciplinary approach to showcase innovative discoveries.
It publishes research aimed at advancing the collective understanding of the cellular and molecular mechanisms underlying diseases. The journal emphasizes translational studies that translate this knowledge into therapeutic strategies. Being fully open access, the journal is accessible to all readers.