Satwik Mukherjee, Sanjib Kr Pal, Partha P Gopmandal, Sankar Sarkar
{"title":"Scaling Effects of the Weissenberg Number in Electrokinetic Oldroyd-B Fluid Flow Within a Microchannel.","authors":"Satwik Mukherjee, Sanjib Kr Pal, Partha P Gopmandal, Sankar Sarkar","doi":"10.1002/elps.202400175","DOIUrl":null,"url":null,"abstract":"<p><p>This study attempts to extend previous research on electrokinetic turbulence (EKT) in Oldroyd-B fluid by investigating the relationship between the Weissenberg number ( <math> <semantics><mrow><mi>W</mi> <mi>i</mi></mrow> <annotation>$Wi$</annotation></semantics> </math> ) and the second-order velocity structure function ( <math> <semantics><msubsup><mi>S</mi> <mi>v</mi> <mn>2</mn></msubsup> <annotation>$S_v^2$</annotation></semantics> </math> ) under applied electric fields. Inspired by Sasmal's demonstration in Sasmal (2022) of how heterogeneous zeta potentials induce turbulence above a critical <math> <semantics><mrow><mi>W</mi> <mi>i</mi></mrow> <annotation>$Wi$</annotation></semantics> </math> , we develop a mathematical framework linking <math> <semantics><mrow><mi>W</mi> <mi>i</mi></mrow> <annotation>$Wi$</annotation></semantics> </math> to turbulent phenomena. Our analysis incorporates recent findings on AC (Zhao & Wang, 2017) and DC (Zhao & Wang 2019) EKT, which have defined scaling laws for velocity and scalar structure functions in the forced cascade region. Our finding shows that <math> <semantics> <mrow><msubsup><mi>S</mi> <mi>v</mi> <mn>2</mn></msubsup> <mrow><mo>(</mo> <mi>l</mi> <mo>)</mo></mrow> <mo>∼</mo> <msubsup><mi>λ</mi> <mn>1</mn> <mrow><mn>4</mn> <mo>/</mo> <mn>5</mn></mrow> </msubsup> <msup><mi>l</mi> <mrow><mn>2</mn> <mo>/</mo> <mn>5</mn></mrow> </msup> </mrow> <annotation>$S_v^2(l) \\sim \\lambda _1^{4/5} l^{2/5}$</annotation></semantics> </math> and <math> <semantics> <mrow><msubsup><mi>S</mi> <mi>σ</mi> <mn>2</mn></msubsup> <mrow><mo>(</mo> <mi>l</mi> <mo>)</mo></mrow> <mo>∼</mo> <msubsup><mi>λ</mi> <mn>1</mn> <mrow><mo>-</mo> <mn>2</mn> <mo>/</mo> <mn>5</mn></mrow> </msubsup> <msup><mi>l</mi> <mrow><mn>4</mn> <mo>/</mo> <mn>5</mn></mrow> </msup> </mrow> <annotation>$S_\\sigma ^2(l) \\sim \\lambda _1^{-2/5} l^{4/5}$</annotation></semantics> </math> , for a length scale <math><semantics><mi>l</mi> <annotation>$l$</annotation></semantics> </math> , and <math> <semantics><mrow><mi>W</mi> <mi>i</mi> <mo>=</mo> <mfrac> <mrow><msub><mi>λ</mi> <mn>1</mn></msub> <msub><mi>u</mi> <mi>l</mi></msub> </mrow> <mi>l</mi></mfrac> </mrow> <annotation>$Wi = \\frac{\\lambda _1 u_l}{l}$</annotation></semantics> </math> , where <math> <semantics> <mrow><msub><mi>u</mi> <mi>l</mi></msub> <mo>=</mo> <msqrt> <mrow><msubsup><mi>S</mi> <mi>u</mi> <mn>2</mn></msubsup> <mrow><mo>(</mo> <mi>l</mi> <mo>)</mo></mrow> </mrow> </msqrt> </mrow> <annotation>$u_l = \\sqrt {S_u^2(l)}$</annotation></semantics> </math> is a velocity fluctuations quantity and <math> <semantics><msub><mi>λ</mi> <mn>1</mn></msub> <annotation>$\\lambda _1$</annotation></semantics> </math> denotes the time relaxation parameter. This work establishes a positive correlation between <math> <semantics><msub><mi>λ</mi> <mn>1</mn></msub> <annotation>$\\lambda _1$</annotation></semantics> </math> and turbulent flow phenomena through a rigorous analysis of velocity structure functions, thereby offering a mathematical foundation for building the design and optimization of EKT-based microfluidic devices.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ELECTROPHORESIS","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/elps.202400175","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
This study attempts to extend previous research on electrokinetic turbulence (EKT) in Oldroyd-B fluid by investigating the relationship between the Weissenberg number ( ) and the second-order velocity structure function ( ) under applied electric fields. Inspired by Sasmal's demonstration in Sasmal (2022) of how heterogeneous zeta potentials induce turbulence above a critical , we develop a mathematical framework linking to turbulent phenomena. Our analysis incorporates recent findings on AC (Zhao & Wang, 2017) and DC (Zhao & Wang 2019) EKT, which have defined scaling laws for velocity and scalar structure functions in the forced cascade region. Our finding shows that and , for a length scale , and , where is a velocity fluctuations quantity and denotes the time relaxation parameter. This work establishes a positive correlation between and turbulent flow phenomena through a rigorous analysis of velocity structure functions, thereby offering a mathematical foundation for building the design and optimization of EKT-based microfluidic devices.
本研究试图通过研究外加电场下魏森伯格数 ( W i $Wi$)与二阶速度结构函数 ( S v 2 $S_v^2$)之间的关系,扩展之前关于奥尔德罗伊德-B 流体中电动湍流 (EKT) 的研究。萨斯马尔在《萨斯马尔(2022 年)》中证明了异质泽塔电位如何在临界 W i $Wi$ 以上诱发湍流,受此启发,我们建立了一个将 W i $Wi$ 与湍流现象联系起来的数学框架。我们的分析结合了最近对交流(Zhao & Wang, 2017)和直流(Zhao & Wang 2019)EKT 的发现,这些发现定义了强迫级联区域速度和标量结构函数的缩放规律。我们的发现表明,对于长度尺度 l $l$ ,S v 2 ( l ) ∼ λ 1 4 / 5 l 2 / 5 $S_v^2(l) \sim \lambda _1^{4/5} l^{2/5}$ 和 S σ 2 ( l ) ∼ λ 1 - 2 / 5 l 4 / 5 $S_\sigma ^2(l) \sim \lambda _1^{-2/5} l^{4/5}$ 、和 W i = λ 1 u l l $Wi = \frac{lambda _1 u_l}{l}$ ,其中 u l = S u 2 ( l ) $u_l = \sqrt {S_u^2(l)}$ 是速度波动量,λ 1 $\lambda _1$ 表示时间弛豫参数。这项工作通过对速度结构函数的严格分析,建立了 λ 1 $\lambda _1$ 与湍流现象之间的正相关关系,从而为设计和优化基于 EKT 的微流控设备提供了数学基础。
期刊介绍:
ELECTROPHORESIS is an international journal that publishes original manuscripts on all aspects of electrophoresis, and liquid phase separations (e.g., HPLC, micro- and nano-LC, UHPLC, micro- and nano-fluidics, liquid-phase micro-extractions, etc.).
Topics include new or improved analytical and preparative methods, sample preparation, development of theory, and innovative applications of electrophoretic and liquid phase separations methods in the study of nucleic acids, proteins, carbohydrates natural products, pharmaceuticals, food analysis, environmental species and other compounds of importance to the life sciences.
Papers in the areas of microfluidics and proteomics, which are not limited to electrophoresis-based methods, will also be accepted for publication. Contributions focused on hyphenated and omics techniques are also of interest. Proteomics is within the scope, if related to its fundamentals and new technical approaches. Proteomics applications are only considered in particular cases.
Papers describing the application of standard electrophoretic methods will not be considered.
Papers on nanoanalysis intended for publication in ELECTROPHORESIS should focus on one or more of the following topics:
• Nanoscale electrokinetics and phenomena related to electric double layer and/or confinement in nano-sized geometry
• Single cell and subcellular analysis
• Nanosensors and ultrasensitive detection aspects (e.g., involving quantum dots, "nanoelectrodes" or nanospray MS)
• Nanoscale/nanopore DNA sequencing (next generation sequencing)
• Micro- and nanoscale sample preparation
• Nanoparticles and cells analyses by dielectrophoresis
• Separation-based analysis using nanoparticles, nanotubes and nanowires.