{"title":"Technological advancements in glucose monitoring and artificial pancreas systems for shaping diabetes care.","authors":"Neha Ghosh, Saurabh Verma","doi":"10.1080/03007995.2024.2422005","DOIUrl":null,"url":null,"abstract":"<p><p>The management of diabetes mellitus has undergone remarkable progress with the introduction of cutting-edge technologies in glucose monitoring and artificial pancreas systems. These innovations have revolutionized diabetes care, offering patients more precise, convenient, and personalized management solutions that significantly improve their quality of life. This review aims to provide a comprehensive overview of recent technological advancements in glucose monitoring devices and artificial pancreas systems, focusing on their transformative impact on diabetes care. A detailed review of the literature was conducted to examine the evolution of glucose monitoring technologies, from traditional invasive methods to more advanced systems. The review explores minimally invasive techniques such as continuous glucose monitoring (CGM) systems and flash glucose monitoring (FGM) systems, which have already been proven to enhance glycemic control and reduce the risk of hypoglycemia. In addition, emerging non-invasive glucose monitoring technologies, including optical, electrochemical, and electro-mechanical methods, were evaluated. These techniques are paving the way for more patient-friendly options that eliminate the need for frequent finger-prick tests, thereby improving adherence and ease of use. Advancements in closed-loop artificial pancreas systems, which integrate CGM with automated insulin delivery, were also examined. These systems, often referred to as \"hybrid closed-loop\" or \"automated insulin delivery\" systems, represent a significant leap forward in diabetes care by automating the process of insulin dosing. Such advancements aim to mimic the natural function of the pancreas, allowing for better glucose regulation without the constant need for manual interventions by the patient. Technological breakthroughs in glucose monitoring and artificial pancreas systems have had a profound impact on diabetes management, providing patients with more accurate, reliable, and individualized treatment options. These innovations hold the potential to significantly improve glycemic control, reduce the incidence of diabetes-related complications, and ultimately enhance the quality of life for individuals living with diabetes. Researchers are continually exploring novel methods to measure glucose more effectively and with greater convenience, further refining the future of diabetes care. Researchers are also investigating the integration of artificial intelligence and machine learning algorithms to further enhance the precision and predictive capabilities of glucose monitoring and insulin delivery systems. With ongoing advancements in sensor technology, connectivity, and data analytics, the future of diabetes care promises to deliver even more seamless, real-time management, empowering patients with greater autonomy and improved health outcomes.</p>","PeriodicalId":10814,"journal":{"name":"Current Medical Research and Opinion","volume":" ","pages":"2095-2107"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Medical Research and Opinion","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/03007995.2024.2422005","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
The management of diabetes mellitus has undergone remarkable progress with the introduction of cutting-edge technologies in glucose monitoring and artificial pancreas systems. These innovations have revolutionized diabetes care, offering patients more precise, convenient, and personalized management solutions that significantly improve their quality of life. This review aims to provide a comprehensive overview of recent technological advancements in glucose monitoring devices and artificial pancreas systems, focusing on their transformative impact on diabetes care. A detailed review of the literature was conducted to examine the evolution of glucose monitoring technologies, from traditional invasive methods to more advanced systems. The review explores minimally invasive techniques such as continuous glucose monitoring (CGM) systems and flash glucose monitoring (FGM) systems, which have already been proven to enhance glycemic control and reduce the risk of hypoglycemia. In addition, emerging non-invasive glucose monitoring technologies, including optical, electrochemical, and electro-mechanical methods, were evaluated. These techniques are paving the way for more patient-friendly options that eliminate the need for frequent finger-prick tests, thereby improving adherence and ease of use. Advancements in closed-loop artificial pancreas systems, which integrate CGM with automated insulin delivery, were also examined. These systems, often referred to as "hybrid closed-loop" or "automated insulin delivery" systems, represent a significant leap forward in diabetes care by automating the process of insulin dosing. Such advancements aim to mimic the natural function of the pancreas, allowing for better glucose regulation without the constant need for manual interventions by the patient. Technological breakthroughs in glucose monitoring and artificial pancreas systems have had a profound impact on diabetes management, providing patients with more accurate, reliable, and individualized treatment options. These innovations hold the potential to significantly improve glycemic control, reduce the incidence of diabetes-related complications, and ultimately enhance the quality of life for individuals living with diabetes. Researchers are continually exploring novel methods to measure glucose more effectively and with greater convenience, further refining the future of diabetes care. Researchers are also investigating the integration of artificial intelligence and machine learning algorithms to further enhance the precision and predictive capabilities of glucose monitoring and insulin delivery systems. With ongoing advancements in sensor technology, connectivity, and data analytics, the future of diabetes care promises to deliver even more seamless, real-time management, empowering patients with greater autonomy and improved health outcomes.
期刊介绍:
Current Medical Research and Opinion is a MEDLINE-indexed, peer-reviewed, international journal for the rapid publication of original research on new and existing drugs and therapies, Phase II-IV studies, and post-marketing investigations. Equivalence, safety and efficacy/effectiveness studies are especially encouraged. Preclinical, Phase I, pharmacoeconomic, outcomes and quality of life studies may also be considered if there is clear clinical relevance