Dynamic entrainment: A deep learning and data-driven process approach for synchronization in the Hodgkin-Huxley model.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Soheil Saghafi, Pejman Sanaei
{"title":"Dynamic entrainment: A deep learning and data-driven process approach for synchronization in the Hodgkin-Huxley model.","authors":"Soheil Saghafi, Pejman Sanaei","doi":"10.1063/5.0219848","DOIUrl":null,"url":null,"abstract":"<p><p>Resonance and synchronized rhythm are significant phenomena observed in dynamical systems in nature, particularly in biological contexts. These phenomena can either enhance or disrupt system functioning. Numerous examples illustrate the necessity for organs within the human body to maintain their rhythmic patterns for proper operation. For instance, in the brain, synchronized or desynchronized electrical activities can contribute to neurodegenerative conditions like Huntington's disease. In this paper, we utilize the well-established Hodgkin-Huxley (HH) model, which describes the propagation of action potentials in neurons through conductance-based mechanisms. Employing a \"data-driven\" approach alongside the outputs of the HH model, we introduce an innovative technique termed \"dynamic entrainment.\" This technique leverages deep learning methodologies to dynamically sustain the system within its entrainment regime. Our findings show that the results of the dynamic entrainment technique match with the outputs of the mechanistic (HH) model.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0219848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Resonance and synchronized rhythm are significant phenomena observed in dynamical systems in nature, particularly in biological contexts. These phenomena can either enhance or disrupt system functioning. Numerous examples illustrate the necessity for organs within the human body to maintain their rhythmic patterns for proper operation. For instance, in the brain, synchronized or desynchronized electrical activities can contribute to neurodegenerative conditions like Huntington's disease. In this paper, we utilize the well-established Hodgkin-Huxley (HH) model, which describes the propagation of action potentials in neurons through conductance-based mechanisms. Employing a "data-driven" approach alongside the outputs of the HH model, we introduce an innovative technique termed "dynamic entrainment." This technique leverages deep learning methodologies to dynamically sustain the system within its entrainment regime. Our findings show that the results of the dynamic entrainment technique match with the outputs of the mechanistic (HH) model.

动态诱导:霍奇金-赫胥黎模型中同步的深度学习和数据驱动过程方法。
共振和同步节奏是在自然界动态系统中观察到的重要现象,尤其是在生物环境中。这些现象既可以增强系统功能,也可以破坏系统功能。大量实例表明,人体器官必须保持其正常运行的节律模式。例如,在大脑中,同步或不同步的电活动会导致亨廷顿氏症等神经退行性疾病。在本文中,我们采用了成熟的霍奇金-赫胥黎(HH)模型,该模型通过基于电导的机制描述了动作电位在神经元中的传播。我们采用 "数据驱动 "的方法,结合 HH 模型的输出结果,引入了一种被称为 "动态诱导 "的创新技术。该技术利用深度学习方法动态地维持系统的诱导机制。我们的研究结果表明,动态诱导技术的结果与力学(HH)模型的输出结果相吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信