Predicting the onset of Alzheimer's disease and related dementia using electronic health records: findings from the cache county study on memory in aging (1995-2008).

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Karen C Schliep, Jeffrey Thornhill, JoAnn T Tschanz, Julio C Facelli, Truls Østbye, Michelle K Sorweid, Ken R Smith, Michael Varner, Richard D Boyce, Christine J Cliatt Brown, Huong Meeks, Samir Abdelrahman
{"title":"Predicting the onset of Alzheimer's disease and related dementia using electronic health records: findings from the cache county study on memory in aging (1995-2008).","authors":"Karen C Schliep, Jeffrey Thornhill, JoAnn T Tschanz, Julio C Facelli, Truls Østbye, Michelle K Sorweid, Ken R Smith, Michael Varner, Richard D Boyce, Christine J Cliatt Brown, Huong Meeks, Samir Abdelrahman","doi":"10.1186/s12911-024-02728-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Clinical notes, biomarkers, and neuroimaging have proven valuable in dementia prediction models. Whether commonly available structured clinical data can predict dementia is an emerging area of research. We aimed to predict gold-standard, research-based diagnoses of dementia including Alzheimer's disease (AD) and/or Alzheimer's disease related dementias (ADRD), in addition to ICD-based AD and/or ADRD diagnoses, in a well-phenotyped, population-based cohort using a machine learning approach.</p><p><strong>Methods: </strong>Administrative healthcare data (k = 163 diagnostic features), in addition to census/vital record sociodemographic data (k = 6 features), were linked to the Cache County Study (CCS, 1995-2008).</p><p><strong>Results: </strong>Among successfully linked UPDB-CCS participants (n = 4206), 522 (12.4%) had incident dementia (AD alone, AD comorbid with ADRD, or ADRD alone) as per the CCS \"gold standard\" assessments. Random Forest models, with a 1-year prediction window, achieved the best performance with an Area Under the Curve (AUC) of 0.67. Accuracy declined for dementia subtypes: AD/ADRD (AUC = 0.65); ADRD (AUC = 0.49). Accuracy improved when using ICD-based dementia diagnoses (AUC = 0.77).</p><p><strong>Discussion: </strong>Commonly available structured clinical data (without labs, notes, or prescription information) demonstrate modest ability to predict \"gold-standard\" research-based AD/ADRD diagnoses, corroborated by prior research. Using ICD diagnostic codes to identify dementia as done in the majority of machine learning dementia prediction models, as compared to \"gold-standard\" dementia diagnoses, can result in higher accuracy, but whether these models are predicting true dementia warrants further research.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520673/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12911-024-02728-4","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Clinical notes, biomarkers, and neuroimaging have proven valuable in dementia prediction models. Whether commonly available structured clinical data can predict dementia is an emerging area of research. We aimed to predict gold-standard, research-based diagnoses of dementia including Alzheimer's disease (AD) and/or Alzheimer's disease related dementias (ADRD), in addition to ICD-based AD and/or ADRD diagnoses, in a well-phenotyped, population-based cohort using a machine learning approach.

Methods: Administrative healthcare data (k = 163 diagnostic features), in addition to census/vital record sociodemographic data (k = 6 features), were linked to the Cache County Study (CCS, 1995-2008).

Results: Among successfully linked UPDB-CCS participants (n = 4206), 522 (12.4%) had incident dementia (AD alone, AD comorbid with ADRD, or ADRD alone) as per the CCS "gold standard" assessments. Random Forest models, with a 1-year prediction window, achieved the best performance with an Area Under the Curve (AUC) of 0.67. Accuracy declined for dementia subtypes: AD/ADRD (AUC = 0.65); ADRD (AUC = 0.49). Accuracy improved when using ICD-based dementia diagnoses (AUC = 0.77).

Discussion: Commonly available structured clinical data (without labs, notes, or prescription information) demonstrate modest ability to predict "gold-standard" research-based AD/ADRD diagnoses, corroborated by prior research. Using ICD diagnostic codes to identify dementia as done in the majority of machine learning dementia prediction models, as compared to "gold-standard" dementia diagnoses, can result in higher accuracy, but whether these models are predicting true dementia warrants further research.

利用电子健康记录预测阿尔茨海默氏症和相关痴呆症的发病:缓存县老龄记忆研究(1995-2008 年)的发现。
导言:临床笔记、生物标志物和神经影像学已被证明在痴呆症预测模型中很有价值。常见的结构化临床数据能否预测痴呆症是一个新兴的研究领域。我们的目标是利用机器学习方法,在一个表型清晰的人群队列中预测基于研究的金标准痴呆诊断,包括阿尔茨海默病(AD)和/或阿尔茨海默病相关痴呆(ADRD),以及基于 ICD 的 AD 和/或 ADRD 诊断:除了人口普查/病历社会人口学数据(k = 6个特征)外,还将行政医疗保健数据(k = 163个诊断特征)与卡奇县研究(CCS,1995-2008年)进行了链接:在成功连接的UPDB-CCS参与者(n = 4206)中,有522人(12.4%)根据CCS "黄金标准 "评估结果患有痴呆症(单纯AD、AD合并ADRD或单纯ADRD)。随机森林模型的预测窗口期为 1 年,性能最佳,曲线下面积 (AUC) 为 0.67。痴呆症亚型的准确性有所下降:AD/ADDR(AUC = 0.65);ADDR(AUC = 0.49)。当使用基于 ICD 的痴呆诊断时,准确性有所提高(AUC = 0.77):讨论:常见的结构化临床数据(不含实验室、笔记或处方信息)在预测基于研究的 "黄金标准 "AD/ADRD 诊断方面表现出一定的能力,这一点已得到先前研究的证实。与 "黄金标准 "痴呆症诊断相比,大多数机器学习痴呆症预测模型都使用 ICD 诊断代码来识别痴呆症,这可以提高准确率,但这些模型是否能预测真正的痴呆症还需要进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信