Improved visualisation of ACP-engineered osteoblastic spheroids: a comparative study of contrast-enhanced micro-CT and traditional imaging techniques.

IF 8.2 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Torben Hildebrand, Qianli Ma, Dagnija Loca, Kristaps Rubenis, Janis Locs, Liebert Parreiras Nogueira, Håvard Jostein Haugen
{"title":"Improved visualisation of ACP-engineered osteoblastic spheroids: a comparative study of contrast-enhanced micro-CT and traditional imaging techniques.","authors":"Torben Hildebrand, Qianli Ma, Dagnija Loca, Kristaps Rubenis, Janis Locs, Liebert Parreiras Nogueira, Håvard Jostein Haugen","doi":"10.1088/1758-5090/ad8bf5","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates osteoblastic cell spheroid cultivation methods, exploring flat-bottom, U-bottom, and rotary flask techniques with and without amorphous calcium phosphate (ACP) supplementation to replicate the 3D bone tissue microenvironment. ACP particles derived from eggshell waste exhibit enhanced osteogenic activity in 3D models. However, representative imaging of intricate 3D tissue-engineered constructs poses challenges in conventional imaging techniques due to notable scattering and absorption effects in light microscopy, and hence limited penetration depth. We investigated contrast-enhanced micro-CT as a methodological approach for comprehensive morphological 3D-analysis of the<i>in-vitro</i>model and compared the technique with confocal laser scanning microscopy, scanning electron microscopy and classical histology. Phosphotungstic acid and iodine-based contrast agents were employed for micro-CT imaging in laboratory and synchrotron micro-CT imaging. Results revealed spheroid shape variations and structural integrity influenced by cultivation methods and ACP particles. The study underscores the advantage of 3D spheroid models over traditional 2D cultures in mimicking bone tissue architecture and cellular interactions, emphasising the growing demand for novel imaging techniques to visualise 3D tissue-engineered models. Contrast-enhanced micro-CT emerges as a promising non-invasive imaging method for tissue-engineered constructs containing ACP particles, offering insights into sample morphology, enabling virtual histology before further analysis.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofabrication","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1758-5090/ad8bf5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates osteoblastic cell spheroid cultivation methods, exploring flat-bottom, U-bottom, and rotary flask techniques with and without amorphous calcium phosphate (ACP) supplementation to replicate the 3D bone tissue microenvironment. ACP particles derived from eggshell waste exhibit enhanced osteogenic activity in 3D models. However, representative imaging of intricate 3D tissue-engineered constructs poses challenges in conventional imaging techniques due to notable scattering and absorption effects in light microscopy, and hence limited penetration depth. We investigated contrast-enhanced micro-CT as a methodological approach for comprehensive morphological 3D-analysis of thein-vitromodel and compared the technique with confocal laser scanning microscopy, scanning electron microscopy and classical histology. Phosphotungstic acid and iodine-based contrast agents were employed for micro-CT imaging in laboratory and synchrotron micro-CT imaging. Results revealed spheroid shape variations and structural integrity influenced by cultivation methods and ACP particles. The study underscores the advantage of 3D spheroid models over traditional 2D cultures in mimicking bone tissue architecture and cellular interactions, emphasising the growing demand for novel imaging techniques to visualise 3D tissue-engineered models. Contrast-enhanced micro-CT emerges as a promising non-invasive imaging method for tissue-engineered constructs containing ACP particles, offering insights into sample morphology, enabling virtual histology before further analysis.

改进 ACP 工程成骨细胞球体的可视化:对比增强显微 CT 与传统成像技术的比较研究。
本研究探讨了成骨细胞球状体的培养方法,探索了平底、U型底和旋转烧瓶技术,在添加或不添加无定形磷酸钙(ACP)的情况下复制三维骨组织微环境。从蛋壳废弃物中提取的 ACP 颗粒在三维模型中显示出更强的成骨活性。然而,由于光学显微镜的散射和吸收效应显著,穿透深度有限,因此传统成像技术难以对复杂的三维组织工程构建物进行代表性成像。我们研究了对比增强显微 CT,将其作为一种对体外模型进行全面形态学三维分析的方法,并将该技术与共聚焦激光扫描显微镜(CLSM)、扫描电子显微镜(SEM)和传统组织学进行了比较。在实验室和同步加速器显微 CT 成像中使用了磷钨酸(PTA)和碘基造影剂。结果显示,球形体的形状变化和结构完整性受到培养方法和 ACP 粒子的影响。与传统的二维培养相比,该研究强调了三维球状模型在模拟骨组织结构和细胞相互作用方面的优势,并强调了对新型成像技术的需求日益增长,以实现三维组织工程模型的可视化。对于含有 ACP 颗粒的组织工程构建物来说,对比增强显微 CT 是一种很有前景的非侵入性成像方法,它能深入了解样品形态,在进一步分析前进行虚拟组织学研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biofabrication
Biofabrication ENGINEERING, BIOMEDICAL-MATERIALS SCIENCE, BIOMATERIALS
CiteScore
17.40
自引率
3.30%
发文量
118
审稿时长
2 months
期刊介绍: Biofabrication is dedicated to advancing cutting-edge research on the utilization of cells, proteins, biological materials, and biomaterials as fundamental components for the construction of biological systems and/or therapeutic products. Additionally, it proudly serves as the official journal of the International Society for Biofabrication (ISBF).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信