3D Printable Alginate-Chitosan Hydrogel Loaded With Ketoconazole Exhibits Anticryptococcal Activity.

IF 3.2 4区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biopolymers Pub Date : 2024-10-29 DOI:10.1002/bip.23638
Manoela Almeida Martins Mace, Camila Leites Reginatto, Victória Rapack Jacinto Silva, Ana Carolina Silva Pinheiro, Laiane Souza da Silva, Dinara Jaqueline Moura, Alexandre Meneghello Fuentefria, Rosane Michele Duarte Soares
{"title":"3D Printable Alginate-Chitosan Hydrogel Loaded With Ketoconazole Exhibits Anticryptococcal Activity.","authors":"Manoela Almeida Martins Mace, Camila Leites Reginatto, Victória Rapack Jacinto Silva, Ana Carolina Silva Pinheiro, Laiane Souza da Silva, Dinara Jaqueline Moura, Alexandre Meneghello Fuentefria, Rosane Michele Duarte Soares","doi":"10.1002/bip.23638","DOIUrl":null,"url":null,"abstract":"<p><p>Natural polymers have recently been investigated for various applications, such as 3D printing and healthcare, including treating infections. Among microbial infections, fungal diseases remain overlooked, with limited therapeutic options and high recurrence. Cutaneous cryptococcosis is an opportunistic fungal infection triggered by mechanical inoculation or hematogenous dissemination of the yeast that causes cryptococcal pneumonia and meningitis. Every year, Cryptococcus neoformans endanger the lives of immunosuppressed hosts, resulting in 180,000 deaths per year. Nonetheless, healthy individuals can also be affected by this fungal infection. Cryptococcosis has a restricted and expensive therapeutic regimen with no topical approach to skin manifestations. This study sought to create a 3D printable biodegradable polymeric hydrogel carrying ketoconazole, a low-cost antifungal drug with reported anticryptococcal activity. The developed hydrogel exhibited good 3D printability and rheological properties, including a pseudoplastic behavior. The FTIR spectra of cross-linked hydrogels revealed interactions between alginate and Ca<sup>+2</sup>, referred to as the egg-box model, indicated by the decrease in peaks at 1600 and 1410 cm<sup>-1</sup>. Furthermore, the hydrogel loaded with ketoconazole showed remarkable antifungal activity against C. neoformans strains indicated by inhibition zones, which cross-linking did not seem to affect its antifungal performance. The developed material remained structurally stable for up to 12 days (288 h) in swelling studies, and preliminary cytotoxicity performed with V79 cells indicates potential for in vivo studies and topical application.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":" ","pages":"e23638"},"PeriodicalIF":3.2000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biopolymers","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/bip.23638","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Natural polymers have recently been investigated for various applications, such as 3D printing and healthcare, including treating infections. Among microbial infections, fungal diseases remain overlooked, with limited therapeutic options and high recurrence. Cutaneous cryptococcosis is an opportunistic fungal infection triggered by mechanical inoculation or hematogenous dissemination of the yeast that causes cryptococcal pneumonia and meningitis. Every year, Cryptococcus neoformans endanger the lives of immunosuppressed hosts, resulting in 180,000 deaths per year. Nonetheless, healthy individuals can also be affected by this fungal infection. Cryptococcosis has a restricted and expensive therapeutic regimen with no topical approach to skin manifestations. This study sought to create a 3D printable biodegradable polymeric hydrogel carrying ketoconazole, a low-cost antifungal drug with reported anticryptococcal activity. The developed hydrogel exhibited good 3D printability and rheological properties, including a pseudoplastic behavior. The FTIR spectra of cross-linked hydrogels revealed interactions between alginate and Ca+2, referred to as the egg-box model, indicated by the decrease in peaks at 1600 and 1410 cm-1. Furthermore, the hydrogel loaded with ketoconazole showed remarkable antifungal activity against C. neoformans strains indicated by inhibition zones, which cross-linking did not seem to affect its antifungal performance. The developed material remained structurally stable for up to 12 days (288 h) in swelling studies, and preliminary cytotoxicity performed with V79 cells indicates potential for in vivo studies and topical application.

3D打印藻酸盐-壳聚糖水凝胶负载酮康唑具有抗隐球菌活性
最近,人们对天然聚合物的各种应用进行了研究,如三维打印和医疗保健,包括治疗感染。在微生物感染中,真菌疾病仍然被忽视,治疗方案有限,复发率高。皮肤隐球菌病是一种机会性真菌感染,由机械接种或血源性传播的酵母菌引发,可导致隐球菌性肺炎和脑膜炎。每年,新生隐球菌都会危及免疫抑制宿主的生命,导致 18 万人死亡。不过,健康人也可能受到这种真菌感染的影响。隐球菌病的治疗方案有限且昂贵,没有针对皮肤表现的局部治疗方法。本研究试图创建一种可三维打印的生物可降解聚合物水凝胶,其中含有酮康唑,这是一种据报道具有抗隐球菌活性的低成本抗真菌药物。所开发的水凝胶具有良好的三维打印性和流变特性,包括假塑性行为。交联水凝胶的傅立叶变换红外光谱显示了海藻酸盐和 Ca+2 之间的相互作用,即蛋盒模型,表现为 1600 和 1410 cm-1 处的峰值降低。此外,负载酮康唑的水凝胶对新变形杆菌菌株具有显著的抗真菌活性,抑制区显示了这一点,交联似乎并不影响其抗真菌性能。在膨胀研究中,所开发的材料在长达 12 天(288 小时)的时间内都保持结构稳定,用 V79 细胞进行的初步细胞毒性研究表明,这种材料具有进行体内研究和局部应用的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biopolymers
Biopolymers 生物-生化与分子生物学
CiteScore
5.30
自引率
0.00%
发文量
48
审稿时长
3 months
期刊介绍: Founded in 1963, Biopolymers publishes strictly peer-reviewed papers examining naturally occurring and synthetic biological macromolecules. By including experimental and theoretical studies on the fundamental behaviour as well as applications of biopolymers, the journal serves the interdisciplinary biochemical, biophysical, biomaterials and biomedical research communities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信