Carboxyl hybrid monolithic column in-tube solid-phase microextraction coupled with UPLC-QTRAP MS/MS for the determination of amphetamine-type stimulants
{"title":"Carboxyl hybrid monolithic column in-tube solid-phase microextraction coupled with UPLC-QTRAP MS/MS for the determination of amphetamine-type stimulants","authors":"","doi":"10.1016/j.chroma.2024.465464","DOIUrl":null,"url":null,"abstract":"<div><div>A carboxyl functionalized organic-inorganic hybrid monolithic column (TMOS-<em>co</em>-CES) was applied as in-tube solid-phase microextraction (SPME) sorbent combining with ultra-performance liquid chromatography-triple quadrupole/linear ion trap mass spectrometer for separation and analyzation of seven typical amphetamine-type stimulants (ATSs), including amphetamine (AM), methamphetamine (MAM), cathinone, methcathinone, 3,4-methylenedioxyamphetamine, 3,4-methylenedioxymethamphetamine and 3,4-methylenedioxyethylamphetamine. The application potential of TMOS-<em>co</em>-CES material to ATSs was preliminarily confirmed by computational simulation by using cathinone as a representative. The influences of various SPME parameters and analytical performance were investigated systematically. As matched with the results of computational simulation, TMOS-<em>co</em>-CES column could capture ATSs under milder near neutral pH condition with high extraction efficiency basing on the adsorption mechanism explained as a mixed mode of electrostatic and hydrophobic interactions. Seven target trace ATSs in spiked sewage, pond water and urine could be rapidly and conveniently separated and enriched by the proposed TMOS-<em>co</em>-CES in-tube SPME method under the optimized conditions with good accuracy, repeatability and resistance to matrix interference. Moreover, AM and MAM had been successfully detected in real urines of suspected drug abusers by TMOS-<em>co</em>-CES in-tube SPME method, which indicated that the proposed method had good application feasibility for drug monitoring. The mild extraction condition and ideal method performance further made the TMOS-<em>co</em>-CES in-tube SPME method more potential in applications for forensic analysis and drug abuse.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chromatography A","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021967324008380","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
A carboxyl functionalized organic-inorganic hybrid monolithic column (TMOS-co-CES) was applied as in-tube solid-phase microextraction (SPME) sorbent combining with ultra-performance liquid chromatography-triple quadrupole/linear ion trap mass spectrometer for separation and analyzation of seven typical amphetamine-type stimulants (ATSs), including amphetamine (AM), methamphetamine (MAM), cathinone, methcathinone, 3,4-methylenedioxyamphetamine, 3,4-methylenedioxymethamphetamine and 3,4-methylenedioxyethylamphetamine. The application potential of TMOS-co-CES material to ATSs was preliminarily confirmed by computational simulation by using cathinone as a representative. The influences of various SPME parameters and analytical performance were investigated systematically. As matched with the results of computational simulation, TMOS-co-CES column could capture ATSs under milder near neutral pH condition with high extraction efficiency basing on the adsorption mechanism explained as a mixed mode of electrostatic and hydrophobic interactions. Seven target trace ATSs in spiked sewage, pond water and urine could be rapidly and conveniently separated and enriched by the proposed TMOS-co-CES in-tube SPME method under the optimized conditions with good accuracy, repeatability and resistance to matrix interference. Moreover, AM and MAM had been successfully detected in real urines of suspected drug abusers by TMOS-co-CES in-tube SPME method, which indicated that the proposed method had good application feasibility for drug monitoring. The mild extraction condition and ideal method performance further made the TMOS-co-CES in-tube SPME method more potential in applications for forensic analysis and drug abuse.
期刊介绍:
The Journal of Chromatography A provides a forum for the publication of original research and critical reviews on all aspects of fundamental and applied separation science. The scope of the journal includes chromatography and related techniques, electromigration techniques (e.g. electrophoresis, electrochromatography), hyphenated and other multi-dimensional techniques, sample preparation, and detection methods such as mass spectrometry. Contributions consist mainly of research papers dealing with the theory of separation methods, instrumental developments and analytical and preparative applications of general interest.