Facile and Efficient Synthesis of Fluorosilicone Polymers by Using an Optimized Gradient Ring-Opening Reaction.

IF 4.2 3区 化学 Q2 POLYMER SCIENCE
Jing-Yang Li, Hong-Tao Pan, Fan Yang, Yu-Yue Wu, Bin-Bin Wu, Jiang Song, Yang Li, Guo-Dong Zhang, Long-Cheng Tang
{"title":"Facile and Efficient Synthesis of Fluorosilicone Polymers by Using an Optimized Gradient Ring-Opening Reaction.","authors":"Jing-Yang Li, Hong-Tao Pan, Fan Yang, Yu-Yue Wu, Bin-Bin Wu, Jiang Song, Yang Li, Guo-Dong Zhang, Long-Cheng Tang","doi":"10.1002/marc.202400698","DOIUrl":null,"url":null,"abstract":"<p><p>Fluorosilicone rubber is essential for sealing in extreme temperatures and non-polar environments due to its exceptional adaptability. However, achieving a high yield of fluorosilicone polymers with medium and high fluorine content remains a challenge. Herein, a facile gradient strategy is developed that involves modifying the method of cyclic monomer addition based on the rate of ring-opening polymerization (ROP), to improve yield and adjust fluorine content precisely. The polymerization process is designed and tailored based on the reaction rates of anionic ring-opening polymerization (AROP) and cationic ring-opening polymerization (CROP) via an efficient gradient strategy. The effects of the polymerization process on the viscosity and yield of vinyl fluorosilicone polymers and hydrofluorosilicone polymers are investigated and optimized. Notably, the as-prepared vinyl-terminated fluoromethylsilane with 60% fluorine content (FMS-Vi-60F) has a high yield (86.6%) and high viscosity (150 000 mPa·s) in a short reaction time, which is superior to previous methods. Clearly, the gradient ring-opening method developed in this work provides a facile and efficient synthesis for fabricating fluorosilicone polymers with a high yield and tunable fluorine content.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":" ","pages":"e2400698"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202400698","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Fluorosilicone rubber is essential for sealing in extreme temperatures and non-polar environments due to its exceptional adaptability. However, achieving a high yield of fluorosilicone polymers with medium and high fluorine content remains a challenge. Herein, a facile gradient strategy is developed that involves modifying the method of cyclic monomer addition based on the rate of ring-opening polymerization (ROP), to improve yield and adjust fluorine content precisely. The polymerization process is designed and tailored based on the reaction rates of anionic ring-opening polymerization (AROP) and cationic ring-opening polymerization (CROP) via an efficient gradient strategy. The effects of the polymerization process on the viscosity and yield of vinyl fluorosilicone polymers and hydrofluorosilicone polymers are investigated and optimized. Notably, the as-prepared vinyl-terminated fluoromethylsilane with 60% fluorine content (FMS-Vi-60F) has a high yield (86.6%) and high viscosity (150 000 mPa·s) in a short reaction time, which is superior to previous methods. Clearly, the gradient ring-opening method developed in this work provides a facile and efficient synthesis for fabricating fluorosilicone polymers with a high yield and tunable fluorine content.

利用优化的梯度开环反应轻松高效地合成氟硅聚合物。
氟硅橡胶因其卓越的适应性而成为在极端温度和非极性环境中进行密封的必备材料。然而,要获得高产率的中氟和高氟含量的氟硅聚合物仍然是一项挑战。在此,我们开发了一种简便的梯度策略,即根据开环聚合(ROP)速率修改单体循环添加方法,以提高产量并精确调整氟含量。根据阴离子开环聚合(AROP)和阳离子开环聚合(CROP)的反应速率,通过有效的梯度策略设计和定制了聚合工艺。研究并优化了聚合过程对乙烯基氟硅聚合物和氢氟硅聚合物的粘度和产率的影响。值得注意的是,所制备的含氟量为 60% 的乙烯基封端氟甲基硅烷(FMS-Vi-60F)在较短的反应时间内具有高产率(86.6%)和高粘度(150 000 mPa-s),优于之前的方法。显然,这项工作中开发的梯度开环法为制造高产率和可调氟含量的氟硅聚合物提供了一种简便高效的合成方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecular Rapid Communications
Macromolecular Rapid Communications 工程技术-高分子科学
CiteScore
7.70
自引率
6.50%
发文量
477
审稿时长
1.4 months
期刊介绍: Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信