Machine Learning-Guided Discovery of Copper(I)-Iodide Cluster Scintillators for Efficient X-ray Luminescence Imaging

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yanze Wang, Tinghao Zhang, Wenjing Zhao, Prof. Weidong Xu, Prof. Zhongbin Wu, Prof. Yung Doug Suh, Prof. Yuezhou Zhang, Xiaowang Liu, Prof. Wei Huang
{"title":"Machine Learning-Guided Discovery of Copper(I)-Iodide Cluster Scintillators for Efficient X-ray Luminescence Imaging","authors":"Yanze Wang,&nbsp;Tinghao Zhang,&nbsp;Wenjing Zhao,&nbsp;Prof. Weidong Xu,&nbsp;Prof. Zhongbin Wu,&nbsp;Prof. Yung Doug Suh,&nbsp;Prof. Yuezhou Zhang,&nbsp;Xiaowang Liu,&nbsp;Prof. Wei Huang","doi":"10.1002/anie.202413672","DOIUrl":null,"url":null,"abstract":"<p>Developing efficient scintillators with environmentally friendly compositions, adaptable band gaps, and robust chemical stability is crucial for modern X-ray radiography. While copper(I)-iodide cluster crystals show promise, the vast design space of inorganic cores and organic ligands poses challenges for conventional approaches. In this study, we present machine learning-guided discovery of copper(I)-iodide cluster scintillators for efficient X-ray luminescence imaging. Our findings reveal that combining base learning models with fused features enhances model generalization, achieving an impressive determination coefficient of 0.88. By leveraging this approach, we obtain a high-performance Cu(I)-I cluster scintillator, named copper iodide-(1-Butyl-1,4-diazabicyclo[2.2.2]octan-1-ium)<sub>2</sub>, which exhibit radioluminescence 56 times stronger than that of PbWO<sub>4</sub>, and enables a detection limit for X-rays of 19.6 nGy<sub>air</sub> s<sup>−1</sup>. Furthermore, we demonstrate the versatility of these scintillators by incorporating them as microfillers in the fabrication of flexible composite scintillators for X-ray imaging, achieving a static resolution of 20 lp mm<sup>−1</sup> and demonstrating promising performance for dynamic X-ray imaging.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202413672","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Developing efficient scintillators with environmentally friendly compositions, adaptable band gaps, and robust chemical stability is crucial for modern X-ray radiography. While copper(I)-iodide cluster crystals show promise, the vast design space of inorganic cores and organic ligands poses challenges for conventional approaches. In this study, we present machine learning-guided discovery of copper(I)-iodide cluster scintillators for efficient X-ray luminescence imaging. Our findings reveal that combining base learning models with fused features enhances model generalization, achieving an impressive determination coefficient of 0.88. By leveraging this approach, we obtain a high-performance Cu(I)-I cluster scintillator, named copper iodide-(1-Butyl-1,4-diazabicyclo[2.2.2]octan-1-ium)2, which exhibit radioluminescence 56 times stronger than that of PbWO4, and enables a detection limit for X-rays of 19.6 nGyair s−1. Furthermore, we demonstrate the versatility of these scintillators by incorporating them as microfillers in the fabrication of flexible composite scintillators for X-ray imaging, achieving a static resolution of 20 lp mm−1 and demonstrating promising performance for dynamic X-ray imaging.

Abstract Image

机器学习引导发现用于高效 X 射线发光成像的碘化铜簇闪烁体。
开发成分环保、带隙适应性强、化学稳定性高的高效闪烁体对现代 X 射线放射成像技术至关重要。虽然铜(I)-碘化物簇晶显示出良好的前景,但无机内核和有机配体的巨大设计空间给传统方法带来了挑战。在本研究中,我们介绍了在机器学习指导下发现用于高效 X 射线发光成像的铜(I)-碘化物簇闪烁体的方法。我们的研究结果表明,将基础学习模型与融合特征相结合可增强模型的泛化能力,其确定系数达到了令人印象深刻的 0.88。利用这种方法,我们获得了一种名为碘化亚铜(1-丁基-1,4-二氮杂双环[2.2.2]辛烷-1-鎓)2 的高性能 Cu(I)-I 簇闪烁体,其放射性比 PbWO4 强 56 倍,对 X 射线的探测极限为 19.6 nGyair s-1。此外,我们还将这些闪烁体作为微填充物,用于制造用于 X 射线成像的柔性复合闪烁体,实现了 20 lp mm-1 的静态分辨率,并在动态 X 射线成像方面表现出良好的性能,从而证明了这些闪烁体的多功能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信