Ermeng Han, Yu-Qing Li, Tun Wu, Qixia Bai, Zhe Zhang, Jie Yuan, Wei Liu, Die Liu, Yiming Li, Pingshan Wang
{"title":"Chiral Metal Self-assemblies of Zirconium-Tetrahedra and Their Second Harmonic Generation Activity.","authors":"Ermeng Han, Yu-Qing Li, Tun Wu, Qixia Bai, Zhe Zhang, Jie Yuan, Wei Liu, Die Liu, Yiming Li, Pingshan Wang","doi":"10.1002/anie.202420223","DOIUrl":null,"url":null,"abstract":"<p><p>The chirality of metal-organic cages holds enormous potential for novel applications in diverse fields, while it is relatively rare to employ such asymmetric units for the construction of noncentrosymmetric materials. Herein, by self-assembling the 4,4',4''-nitrilotribenzoic acid (H3NBA) with bis(cyclopentadienyl)-zirconium dichloride (Cp2ZrCl2, Cp = η5-C5H5) in different solvent conditions, we have obtained three hierarchical packing modes of metallo-tetrahedra with distinct spatial symmetry groups (designated as Zr-α, Zr-β, and Zr-γ). Among them, Zr-α employs a simple cubic arrangement and is a common centrosymmetric superstructure, which consists of a pair of equimolar metallo-tetrahedra enantiomers in its unit cell. While Zr-β results in conglomerates with spontaneous resolution without using any resolving agents, giving rise to two enantiopure entities separately (Zr-β-P, Zr-β-M). More importantly, Zr-γ breaks the inversion center of symmetry and crystallizes into a racemic yet non-centrosymmetric superstructure with face-centered cubic packing mode. Based on the non-centrosymmetric nature, the hierarchical superstructure Zr-γ displayed good second harmonic generation activities. This work presents a successful instance wherein the reaction solvent induces the modulation of intermolecular packing mode to afford non-centrosymmetric solid materials, which can greatly promote the development of noncentrosymmetric solid (NCS) materials.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202420223","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The chirality of metal-organic cages holds enormous potential for novel applications in diverse fields, while it is relatively rare to employ such asymmetric units for the construction of noncentrosymmetric materials. Herein, by self-assembling the 4,4',4''-nitrilotribenzoic acid (H3NBA) with bis(cyclopentadienyl)-zirconium dichloride (Cp2ZrCl2, Cp = η5-C5H5) in different solvent conditions, we have obtained three hierarchical packing modes of metallo-tetrahedra with distinct spatial symmetry groups (designated as Zr-α, Zr-β, and Zr-γ). Among them, Zr-α employs a simple cubic arrangement and is a common centrosymmetric superstructure, which consists of a pair of equimolar metallo-tetrahedra enantiomers in its unit cell. While Zr-β results in conglomerates with spontaneous resolution without using any resolving agents, giving rise to two enantiopure entities separately (Zr-β-P, Zr-β-M). More importantly, Zr-γ breaks the inversion center of symmetry and crystallizes into a racemic yet non-centrosymmetric superstructure with face-centered cubic packing mode. Based on the non-centrosymmetric nature, the hierarchical superstructure Zr-γ displayed good second harmonic generation activities. This work presents a successful instance wherein the reaction solvent induces the modulation of intermolecular packing mode to afford non-centrosymmetric solid materials, which can greatly promote the development of noncentrosymmetric solid (NCS) materials.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.