Rapid Thermal Shutdown of Deep-Eutectic-Polymer Electrolyte Enabling Overheating Self-Protection of Lithium Metal Batteries.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zengqi Zhang, Gang Li, Xiaofan Du, Lang Huang, Guohong Kang, Jianjun Zhang, Zili Cui, Tao Liu, Ling Ni, Yongcheng Jin, Guanglei Cui
{"title":"Rapid Thermal Shutdown of Deep-Eutectic-Polymer Electrolyte Enabling Overheating Self-Protection of Lithium Metal Batteries.","authors":"Zengqi Zhang, Gang Li, Xiaofan Du, Lang Huang, Guohong Kang, Jianjun Zhang, Zili Cui, Tao Liu, Ling Ni, Yongcheng Jin, Guanglei Cui","doi":"10.1002/advs.202409628","DOIUrl":null,"url":null,"abstract":"<p><p>Safety concerns and uncontrollable dendrite growths have severely impeded the advancement of lithium-metal batteries. Herein, a safe deep-eutectic-polymer electrolyte with built-in thermal shutdown capability is proposed by utilizing hydrophobic association of methylcellulose within a novel deep-eutectic-solvent. Specifically, at elevated temperatures, methylcellulose chains aggregate to form dense polymer networks due to hydrophobic association and break the solvation structure equilibrium inside the deep-eutectic system through encapsulating Li<sup>+</sup> in polymer matrix, leading to quick solidification of the electrolyte. The solidified electrolyte obstructs Li<sup>+</sup> transports and terminates electrochemical processes, protecting LMBs from unstoppable exothermic chain reactions. The accelerating rate calorimeter tests of 1 Ah pouch cells demonstrate that the as-prepared electrolyte significantly improves the onset self-heating temperature from 73 °C for conventional electrolytes to 172 °C and prolongs the thermal runaway waiting time more than 20 hours. More impressively, benefiting from its favorable electrochemical performance, this polymer electrolyte enables LiNi<sub>0.8</sub>Mn<sub>0.1</sub>Co<sub>0.1</sub>O<sub>2</sub>||Li batteries to retain 92% capacity over 200 cycles and LiFePO<sub>4</sub>||Li batteries to maintain 90% capacity after 500 cycles. This research paves a promising avenue for enhancing both the safety and electrochemical performance of high-energy-density LMBs.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":null,"pages":null},"PeriodicalIF":14.3000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202409628","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Safety concerns and uncontrollable dendrite growths have severely impeded the advancement of lithium-metal batteries. Herein, a safe deep-eutectic-polymer electrolyte with built-in thermal shutdown capability is proposed by utilizing hydrophobic association of methylcellulose within a novel deep-eutectic-solvent. Specifically, at elevated temperatures, methylcellulose chains aggregate to form dense polymer networks due to hydrophobic association and break the solvation structure equilibrium inside the deep-eutectic system through encapsulating Li+ in polymer matrix, leading to quick solidification of the electrolyte. The solidified electrolyte obstructs Li+ transports and terminates electrochemical processes, protecting LMBs from unstoppable exothermic chain reactions. The accelerating rate calorimeter tests of 1 Ah pouch cells demonstrate that the as-prepared electrolyte significantly improves the onset self-heating temperature from 73 °C for conventional electrolytes to 172 °C and prolongs the thermal runaway waiting time more than 20 hours. More impressively, benefiting from its favorable electrochemical performance, this polymer electrolyte enables LiNi0.8Mn0.1Co0.1O2||Li batteries to retain 92% capacity over 200 cycles and LiFePO4||Li batteries to maintain 90% capacity after 500 cycles. This research paves a promising avenue for enhancing both the safety and electrochemical performance of high-energy-density LMBs.

实现锂金属电池过热自我保护的深共晶聚合物电解液的快速热关断。
安全问题和无法控制的枝晶生长严重阻碍了锂金属电池的发展。本文提出了一种安全的深共晶聚合物电解质,利用甲基纤维素在新型深共晶溶剂中的疏水性结合,内置热关断功能。具体来说,在高温条件下,甲基纤维素链因疏水作用而聚集形成致密的聚合物网络,并通过将 Li+ 包裹在聚合物基质中打破深共晶体系内部的溶解结构平衡,从而导致电解质快速凝固。凝固的电解质阻碍了 Li+ 的运输并终止了电化学过程,从而保护 LMB 免受不可阻挡的放热链式反应的影响。1 Ah 袋装电池的加速热量计测试表明,制备的电解质显著提高了起始自热温度,从传统电解质的 73°C 提高到 172°C,并将热失控等待时间延长了 20 多个小时。更令人印象深刻的是,得益于其良好的电化学性能,这种聚合物电解质使 LiNi0.8Mn0.1Co0.1O2||锂电池在 200 次循环后仍能保持 92% 的容量,使 LiFePO4||锂电池在 500 次循环后仍能保持 90% 的容量。这项研究为提高高能量密度锂电池的安全性和电化学性能铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信