Chaobo Dai, Zhenghan Shi, Yi Xu, Lingkai Su, Xin Li, Peixue Deng, Hao Wen, Jiahao Wang, Qing Ye, Ray P S Han, Qingjun Liu
{"title":"Wearable Multifunctional Hydrogel for Oral Microenvironment Visualized Sensing Coupled with Sonodynamic Bacterial Elimination and Tooth Whitening.","authors":"Chaobo Dai, Zhenghan Shi, Yi Xu, Lingkai Su, Xin Li, Peixue Deng, Hao Wen, Jiahao Wang, Qing Ye, Ray P S Han, Qingjun Liu","doi":"10.1002/adhm.202401269","DOIUrl":null,"url":null,"abstract":"<p><p>Bacterial-driven dental caries and tooth discoloration are growing concerns as the most common oral health problems. Current diagnostic methods and treatment strategies hardly allow simultaneous early detection and non-invasive treatment of these oral diseases. Herein, a wearable multifunctional double network hydrogel combined with polyaniline and barium titanate (PANI@BTO) nanoparticles is developed for oral microenvironment visualized sensing and sonodynamic therapy. Due to the colorimetric properties of polyaniline, the hydrogel displays a highly sensitive and selective response for visualized sensing of oral acidic microenvironment. Meanwhile, the barium titanate in the hydrogel efficiently generates reactive oxygen species (ROS) under ultrasound irradiation, realizing non-invasive treatment in the oral cavity. Through bacterial elimination experiments and tooth whitening studies, the hydrogel can achieve the dual effect of effectively inhibiting the growth of cariogenic bacteria and degrading tooth surface pigments. Owing to the visualized sensing of the oral acidic microenvironment and efficient sonodynamic therapy function, the proposed hydrogel system offers a solution for the prevention of caries and tooth whitening, which is promising in developing the biomedical system targeting the simultaneous sensing and therapy for oral diseases.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2401269"},"PeriodicalIF":10.0000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202401269","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Bacterial-driven dental caries and tooth discoloration are growing concerns as the most common oral health problems. Current diagnostic methods and treatment strategies hardly allow simultaneous early detection and non-invasive treatment of these oral diseases. Herein, a wearable multifunctional double network hydrogel combined with polyaniline and barium titanate (PANI@BTO) nanoparticles is developed for oral microenvironment visualized sensing and sonodynamic therapy. Due to the colorimetric properties of polyaniline, the hydrogel displays a highly sensitive and selective response for visualized sensing of oral acidic microenvironment. Meanwhile, the barium titanate in the hydrogel efficiently generates reactive oxygen species (ROS) under ultrasound irradiation, realizing non-invasive treatment in the oral cavity. Through bacterial elimination experiments and tooth whitening studies, the hydrogel can achieve the dual effect of effectively inhibiting the growth of cariogenic bacteria and degrading tooth surface pigments. Owing to the visualized sensing of the oral acidic microenvironment and efficient sonodynamic therapy function, the proposed hydrogel system offers a solution for the prevention of caries and tooth whitening, which is promising in developing the biomedical system targeting the simultaneous sensing and therapy for oral diseases.
期刊介绍:
Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.