Wonwoo Jeong, Jeonghyun Son, Jeonghan Choi, Jonghyeuk Han, Seunggyu Jeon, Min Kyeong Kim, Won Ha, Hyun-Wook Kang
{"title":"Clinically Relevant and Precisely Printable Live Adipose Tissue-Based Bio-Ink for Volumetric Soft Tissue Reconstruction.","authors":"Wonwoo Jeong, Jeonghyun Son, Jeonghan Choi, Jonghyeuk Han, Seunggyu Jeon, Min Kyeong Kim, Won Ha, Hyun-Wook Kang","doi":"10.1002/adhm.202402680","DOIUrl":null,"url":null,"abstract":"<p><p>Autologous fat is widely used in soft tissue reconstruction; however, significant volume reduction owing to necrosis and degradation of the transplanted adipose tissue (AT) remains a major challenge. To address this issue, a novel live AT micro-fragment-based bio-ink (ATmf bio-ink) compatible with precision 3D printing, is developed. Live AT micro-fragments of ≈280 µm in size are prepared using a custom tissue micronizer and they are incorporated into a fibrinogen/gelatin mixture to create the ATmf bio-ink. AT micro-fragments exhibit high viability and preserve the heterogeneous cell population and extracellular matrix of the native AT. The developed bio-ink enables precise micropatterning and provides an excellent adipo-inductive microenvironment. AT grafts produced by co-printing the bio-ink with polycaprolactone demonstrate a 500% improvement in volume retention and a 300% increase in blood vessel infiltration in vivo compared with conventional microfat grafts. In vivo engraftment of AT grafts is further enhanced by using a stem cell-laden ATmf bio-ink. Last, it is successfully demonstrated that the bio-ink is enabled for the creation of clinically relevant and patient-specific AT grafts for patients undergoing partial mastectomy. This novel ATmf bio-ink for volumetric soft tissue reconstruction offers a pioneering solution for addressing the limitations of existing clinical techniques.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2402680"},"PeriodicalIF":10.0000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202402680","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Autologous fat is widely used in soft tissue reconstruction; however, significant volume reduction owing to necrosis and degradation of the transplanted adipose tissue (AT) remains a major challenge. To address this issue, a novel live AT micro-fragment-based bio-ink (ATmf bio-ink) compatible with precision 3D printing, is developed. Live AT micro-fragments of ≈280 µm in size are prepared using a custom tissue micronizer and they are incorporated into a fibrinogen/gelatin mixture to create the ATmf bio-ink. AT micro-fragments exhibit high viability and preserve the heterogeneous cell population and extracellular matrix of the native AT. The developed bio-ink enables precise micropatterning and provides an excellent adipo-inductive microenvironment. AT grafts produced by co-printing the bio-ink with polycaprolactone demonstrate a 500% improvement in volume retention and a 300% increase in blood vessel infiltration in vivo compared with conventional microfat grafts. In vivo engraftment of AT grafts is further enhanced by using a stem cell-laden ATmf bio-ink. Last, it is successfully demonstrated that the bio-ink is enabled for the creation of clinically relevant and patient-specific AT grafts for patients undergoing partial mastectomy. This novel ATmf bio-ink for volumetric soft tissue reconstruction offers a pioneering solution for addressing the limitations of existing clinical techniques.
期刊介绍:
Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.