Nanobioengineered Al2O3 Core-Shell Nanoparticle Preparation Using Bauhinia Variegate Plant Extract for Efficient Photocatalysis and Electrochemical Sensing.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Kshitij Rb Singh, Pooja Singh, Jay Singh, Shyam S Pandey
{"title":"Nanobioengineered Al<sub>2</sub>O<sub>3</sub> Core-Shell Nanoparticle Preparation Using <i>Bauhinia Variegate</i> Plant Extract for Efficient Photocatalysis and Electrochemical Sensing.","authors":"Kshitij Rb Singh, Pooja Singh, Jay Singh, Shyam S Pandey","doi":"10.1021/acsabm.4c01213","DOIUrl":null,"url":null,"abstract":"<p><p>Core-shell-based nanomaterials have garnered considerable attention in the recent past not only in catalytic applications but also in their potentiality in selective and efficient sensing. Present research reports the first and successful biosynthesis of the core (c-Al<sub>2</sub>O<sub>3</sub>)-shell nanoparticles (NPs) using <i>Bauhinia variegate</i> blossom extract as reducing and capping agents. The synthesized c-Al<sub>2</sub>O<sub>3</sub> NPs were characterized and utilized to fabricate nanobioengineered electrodes on indium tin oxide (ITO) substrates via electrophoretic deposition. Electrochemical analysis, including cyclic voltammetry and differential pulse voltammetry, revealed quasi-reversible processes with high electron-transfer rates (<i>K</i><sub>s</sub> = 0.66 s<sup>-1</sup>) and a diffusion coefficient (<i>D</i> = 5.84 × 10<sup>-2</sup> cm<sup>2</sup> s<sup>-1</sup>). The electrode exhibited a very high sensitivity (23.44 μA μM<sup>-1</sup> cm<sup>-2</sup>) and a low detection limit (0.463 μM) for sodium azide (NaN<sub>3</sub>) over two linear ranges of 1-6 and 8-20 μM. Additionally, c-Al<sub>2</sub>O<sub>3</sub> NPs demonstrated the effective photocatalytic degradation of crystal violet dye under visible light, following pseudo-first-order kinetics. The fabricated electrode showed excellent selectivity, stability, and reproducibility, highlighting its potential for environmental monitoring and clinical diagnostics.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c01213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Core-shell-based nanomaterials have garnered considerable attention in the recent past not only in catalytic applications but also in their potentiality in selective and efficient sensing. Present research reports the first and successful biosynthesis of the core (c-Al2O3)-shell nanoparticles (NPs) using Bauhinia variegate blossom extract as reducing and capping agents. The synthesized c-Al2O3 NPs were characterized and utilized to fabricate nanobioengineered electrodes on indium tin oxide (ITO) substrates via electrophoretic deposition. Electrochemical analysis, including cyclic voltammetry and differential pulse voltammetry, revealed quasi-reversible processes with high electron-transfer rates (Ks = 0.66 s-1) and a diffusion coefficient (D = 5.84 × 10-2 cm2 s-1). The electrode exhibited a very high sensitivity (23.44 μA μM-1 cm-2) and a low detection limit (0.463 μM) for sodium azide (NaN3) over two linear ranges of 1-6 and 8-20 μM. Additionally, c-Al2O3 NPs demonstrated the effective photocatalytic degradation of crystal violet dye under visible light, following pseudo-first-order kinetics. The fabricated electrode showed excellent selectivity, stability, and reproducibility, highlighting its potential for environmental monitoring and clinical diagnostics.

利用洋紫荆植物提取物制备纳米生物工程 Al2O3 核壳纳米粒子,用于高效光催化和电化学传感。
近年来,基于核壳的纳米材料不仅在催化应用方面备受关注,而且在选择性和高效传感方面也具有巨大潜力。本研究首次成功地利用洋紫荆花提取物作为还原剂和封端剂,合成了核壳纳米粒子(NPs)。对合成的 c-Al2O3 NPs 进行了表征,并利用其通过电泳沉积在铟锡氧化物(ITO)基底上制造了纳米生物工程电极。包括循环伏安法和差分脉冲伏安法在内的电化学分析表明,该电极具有准可逆过程,电子转移率高(Ks = 0.66 s-1),扩散系数大(D = 5.84 × 10-2 cm2 s-1)。在 1-6 μM 和 8-20 μM 两个线性范围内,该电极对叠氮化钠(NaN3)具有极高的灵敏度(23.44 μA μM-1 cm-2)和较低的检测限(0.463 μM)。此外,在可见光条件下,c-Al2O3 NPs 还能按照伪一阶动力学对水晶紫染料进行有效的光催化降解。所制备的电极具有极佳的选择性、稳定性和可重复性,突出了其在环境监测和临床诊断方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信