Jiatong Han, Guangyang Liu, Yushan Hou, Ailing Zhou, Jie Zhou, Ge Chen, Honghao Lv, Yaowei Zhang, Jun Lv, Jing Chen, Xiaomin Xu, Donghui Xu
{"title":"Fabrication of Novel Porous Nano-pesticides by Modifying MPN onto Cu-TCPP MOFs to Enhance Bactericidal Efficacy and Modulate Its Bioavailability.","authors":"Jiatong Han, Guangyang Liu, Yushan Hou, Ailing Zhou, Jie Zhou, Ge Chen, Honghao Lv, Yaowei Zhang, Jun Lv, Jing Chen, Xiaomin Xu, Donghui Xu","doi":"10.1021/acs.nanolett.4c04277","DOIUrl":null,"url":null,"abstract":"<p><p>Nano-pesticides have attracted much attention in the field of agriculture, due to existing problems such as decreased bactericidal effect and poor adhesion. An environmentally friendly metal porphyrin (Cu-TCPP)-based nanocarrier pesticide release of diniconazole (DIN) was designed to enhance bactericidal efficacy and modulate its bioavailability in a multidimensional manner by constructing a metal phenolic network (MPN) encapsulation. The introduction of the MPN prevents the DIN from prematurely escaping from the Cu-TCPP@DIN@MPN in the environment and gives it strong interfacial adhesion to resist rain washing. The resulting Cu-TCPP@DIN@MPN nanoparticles (NPs) showed a lamellar stacked embedded structure, which improved the inhibition of <i>Fusarium oxysporum</i> (90.9%) and photostability (67.2%), while they do not affect healthy plant growth and meet the relevant food safety requirements for DIN residues. This work provides new ideas for the development of superior photostable, adhesive, rainwater erosion-resistant, and sustainable nanocarrier pesticides.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c04277","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nano-pesticides have attracted much attention in the field of agriculture, due to existing problems such as decreased bactericidal effect and poor adhesion. An environmentally friendly metal porphyrin (Cu-TCPP)-based nanocarrier pesticide release of diniconazole (DIN) was designed to enhance bactericidal efficacy and modulate its bioavailability in a multidimensional manner by constructing a metal phenolic network (MPN) encapsulation. The introduction of the MPN prevents the DIN from prematurely escaping from the Cu-TCPP@DIN@MPN in the environment and gives it strong interfacial adhesion to resist rain washing. The resulting Cu-TCPP@DIN@MPN nanoparticles (NPs) showed a lamellar stacked embedded structure, which improved the inhibition of Fusarium oxysporum (90.9%) and photostability (67.2%), while they do not affect healthy plant growth and meet the relevant food safety requirements for DIN residues. This work provides new ideas for the development of superior photostable, adhesive, rainwater erosion-resistant, and sustainable nanocarrier pesticides.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.