2D Membranes Interlayered with Bimetallic Metal-Organic Frameworks for Lithium Separation from Brines.

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nano Letters Pub Date : 2024-11-13 Epub Date: 2024-10-29 DOI:10.1021/acs.nanolett.4c04040
Furong Yuan, Qifeng Gao, Zixiao Lv, Yaoling Zhang, Xin Liu, Jiaoyu Peng, Zhan Li
{"title":"2D Membranes Interlayered with Bimetallic Metal-Organic Frameworks for Lithium Separation from Brines.","authors":"Furong Yuan, Qifeng Gao, Zixiao Lv, Yaoling Zhang, Xin Liu, Jiaoyu Peng, Zhan Li","doi":"10.1021/acs.nanolett.4c04040","DOIUrl":null,"url":null,"abstract":"<p><p>Efficient lithium extraction from salt lakes is essential for a sustainable resource supply. This study tackles the challenge of separating Li<sup>+</sup> from Mg<sup>2+</sup> in complex brines by innovatively integrating two-dimensional (2D) graphene oxide (GO) with bimetallic metal-organic frameworks (MOFs). Zn<sup>2+</sup> and Co<sup>2+</sup> ions are confined within GO interlayers through an in situ synthesis, forming a 2D Zn-Co MOFs/GO membrane (Zn-Co-GOM). This design exploits the unique advantages of bimetallic MOFs, including enhanced structural stability and superior ion separation capabilities due to the synergistic effects of Zn and Co. The Zn-Co-GOM demonstrates an impressive separation factor of 191 for Li<sup>+</sup> over Mg<sup>2+</sup>, significantly surpassing traditional membranes. This exceptional selectivity is achieved through a combination of size exclusion effects and ion transport energy barriers. Our approach not only enhances the practical application of membrane technology for lithium extraction from salt lakes but also provides valuable insights into the underlying separation mechanisms.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c04040","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient lithium extraction from salt lakes is essential for a sustainable resource supply. This study tackles the challenge of separating Li+ from Mg2+ in complex brines by innovatively integrating two-dimensional (2D) graphene oxide (GO) with bimetallic metal-organic frameworks (MOFs). Zn2+ and Co2+ ions are confined within GO interlayers through an in situ synthesis, forming a 2D Zn-Co MOFs/GO membrane (Zn-Co-GOM). This design exploits the unique advantages of bimetallic MOFs, including enhanced structural stability and superior ion separation capabilities due to the synergistic effects of Zn and Co. The Zn-Co-GOM demonstrates an impressive separation factor of 191 for Li+ over Mg2+, significantly surpassing traditional membranes. This exceptional selectivity is achieved through a combination of size exclusion effects and ion transport energy barriers. Our approach not only enhances the practical application of membrane technology for lithium extraction from salt lakes but also provides valuable insights into the underlying separation mechanisms.

Abstract Image

用于从盐水中分离锂的双金属金属有机框架二维膜。
从盐湖中高效提取锂对可持续资源供应至关重要。本研究通过创新性地将二维(2D)氧化石墨烯(GO)与双金属金属有机框架(MOFs)整合在一起,解决了从复杂盐水中分离 Li+ 与 Mg2+ 的难题。通过原位合成,Zn2+ 和 Co2+ 离子被限制在 GO 夹层中,形成了二维 Zn-Co MOFs/GO 膜(Zn-Co-GOM)。这种设计利用了双金属 MOFs 的独特优势,包括由于 Zn 和 Co 的协同作用而增强的结构稳定性和卓越的离子分离能力。Zn-Co-GOM 对 Li+ 与 Mg2+ 的分离系数高达 191,大大超过了传统的膜。这种非凡的选择性是通过尺寸排斥效应和离子传输能量障碍的结合实现的。我们的方法不仅提高了膜技术在盐湖锂萃取中的实际应用,还为了解基本分离机制提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信