Optimizing spin qubit performance of lanthanide-based metal−organic frameworks

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xiya Du, Lei Sun
{"title":"Optimizing spin qubit performance of lanthanide-based metal−organic frameworks","authors":"Xiya Du, Lei Sun","doi":"10.1039/d4qi02324b","DOIUrl":null,"url":null,"abstract":"Lanthanide-based spin qubits are intriguing candidates for high-fidelity quantum memories owing to their spin-optical interfaces. Metal−organic frameworks (MOFs) offer promising solid-state platforms to host lanthanide ions because their bottom-up synthesis enables rational optimization of both spin coherence and luminescence. Here, we incorporated Nd<small><sup>3+</sup></small> and Gd<small><sup>3+</sup></small> into a La<small><sup>3+</sup></small>-based MOF with various doping levels and examined their qubit performance including the spin relaxation time (<em>T</em><small><sub>1</sub></small>) and phase memory time (<em>T</em><small><sub>m</sub></small>). Both Nd<small><sup>3+</sup></small> and Gd<small><sup>3+</sup></small> behave as spin qubits with <em>T</em><small><sub>1</sub></small> exceeding 1 ms and <em>T</em><small><sub>m</sub></small> approaching 2 μs at 3.2 K under low doping levels. Variable-temperature spin dynamic studies unveiled spin relaxation and decoherence mechanisms, highlighting critical roles of spin-phonon coupling and spin-spin dipolar coupling. Accordingly, reducing the spin concentration, spin-orbit coupling strength, and ground spin state improves the qubit performance of lanthanide-based MOFs. These optimization strategies serve as guidelines for future development of solid-state lanthanide qubits targeting quantum information technologies.","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4qi02324b","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Lanthanide-based spin qubits are intriguing candidates for high-fidelity quantum memories owing to their spin-optical interfaces. Metal−organic frameworks (MOFs) offer promising solid-state platforms to host lanthanide ions because their bottom-up synthesis enables rational optimization of both spin coherence and luminescence. Here, we incorporated Nd3+ and Gd3+ into a La3+-based MOF with various doping levels and examined their qubit performance including the spin relaxation time (T1) and phase memory time (Tm). Both Nd3+ and Gd3+ behave as spin qubits with T1 exceeding 1 ms and Tm approaching 2 μs at 3.2 K under low doping levels. Variable-temperature spin dynamic studies unveiled spin relaxation and decoherence mechanisms, highlighting critical roles of spin-phonon coupling and spin-spin dipolar coupling. Accordingly, reducing the spin concentration, spin-orbit coupling strength, and ground spin state improves the qubit performance of lanthanide-based MOFs. These optimization strategies serve as guidelines for future development of solid-state lanthanide qubits targeting quantum information technologies.
优化基于镧系元素的金属有机框架的自旋量子比特性能
基于镧系元素的自旋量子比特因其自旋光学界面而成为高保真量子存储器的诱人候选者。金属有机框架(MOFs)是承载镧系元素离子的前景广阔的固态平台,因为自下而上的合成可以合理优化自旋相干性和发光。在这里,我们将 Nd3+ 和 Gd3+ 以不同的掺杂水平加入到基于 La3+ 的 MOF 中,并考察了它们的量子比特性能,包括自旋弛豫时间(T1)和相存储时间(Tm)。在 3.2 K 的低掺杂水平下,Nd3+ 和 Gd3+ 都表现为自旋量子比特,T1 超过 1 ms,Tm 接近 2 μs。变温自旋动态研究揭示了自旋弛豫和退相干机制,凸显了自旋-声子耦合和自旋-自旋偶极耦合的关键作用。因此,降低自旋浓度、自旋轨道耦合强度和基底自旋态可以提高镧系 MOF 的量子比特性能。这些优化策略为未来开发以量子信息技术为目标的固态镧系元素量子比特提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信