Xuechun Wang , Zhiye Ma , Shuai Xu , Dan Zheng , Bo Bai , Shichao Zong
{"title":"Hofmeister effect induced water activation of hydrogel and its applications for the accelerated solar evaporation in brine","authors":"Xuechun Wang , Zhiye Ma , Shuai Xu , Dan Zheng , Bo Bai , Shichao Zong","doi":"10.1016/j.watres.2024.122709","DOIUrl":null,"url":null,"abstract":"<div><div>Solar-driven desalination has emerged as a promising approach to address water scarcity caused by the decreasing supply of freshwater. Reducing the enthalpy of water vaporization is crucial for enhancing the efficiency of solar-powered desalination. In this study, inspired by the Hofmeister effect, we developed a highly hydratable network hydrogel evaporator to achieve a superior evaporation rate in brine compared with pure water. The evaporator comprised a carbonized layer as the photothermal layer and a chitosan aerogel hydrogel as the hydratable matrix. The hydrogel exhibited a dramatically reduced vaporization enthalpy of 1397 J/g and a significant evaporation rate of 2.38 kg m<sup>−2</sup> h<sup>−1</sup> when exposed to seawater. These results demonstrated the superior performance of hydrogel compared with pure water (1.91 kg m<sup>−2</sup> h<sup>−1</sup>). Excellent evaporation rates and outstanding salt resistance ensured efficient coordination for practical long-term desalination applications. Further investigations revealed that the remarkable evaporation performance of the carbonized chitosan (CCS) hydrogel in brine environments was attributed to its hydrability, which was regulated by Cl<sup>−</sup>. According to the Hofmeister effect, Cl<sup>−</sup> accelerated the hydration chemistry in CCS and suppressed the associated crystallinity, which resulted in a lower enthalpy of vaporisation owing to a higher amount of intermediate water. With its superior evaporation performance in brine and comprehensive theoretical simulation analysis, this study presents an achievable and economical strategy for simultaneously addressing the water and energy crises.</div></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"268 ","pages":"Article 122709"},"PeriodicalIF":11.4000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135424016087","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Solar-driven desalination has emerged as a promising approach to address water scarcity caused by the decreasing supply of freshwater. Reducing the enthalpy of water vaporization is crucial for enhancing the efficiency of solar-powered desalination. In this study, inspired by the Hofmeister effect, we developed a highly hydratable network hydrogel evaporator to achieve a superior evaporation rate in brine compared with pure water. The evaporator comprised a carbonized layer as the photothermal layer and a chitosan aerogel hydrogel as the hydratable matrix. The hydrogel exhibited a dramatically reduced vaporization enthalpy of 1397 J/g and a significant evaporation rate of 2.38 kg m−2 h−1 when exposed to seawater. These results demonstrated the superior performance of hydrogel compared with pure water (1.91 kg m−2 h−1). Excellent evaporation rates and outstanding salt resistance ensured efficient coordination for practical long-term desalination applications. Further investigations revealed that the remarkable evaporation performance of the carbonized chitosan (CCS) hydrogel in brine environments was attributed to its hydrability, which was regulated by Cl−. According to the Hofmeister effect, Cl− accelerated the hydration chemistry in CCS and suppressed the associated crystallinity, which resulted in a lower enthalpy of vaporisation owing to a higher amount of intermediate water. With its superior evaporation performance in brine and comprehensive theoretical simulation analysis, this study presents an achievable and economical strategy for simultaneously addressing the water and energy crises.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.