Ying Wei , Ziwei Chen , Marcus Yio , Christopher Cheeseman , Hailong Wang , Chi Sun Poon
{"title":"Advanced moisture control in porous aggregates for improved lightweight high-performance concrete","authors":"Ying Wei , Ziwei Chen , Marcus Yio , Christopher Cheeseman , Hailong Wang , Chi Sun Poon","doi":"10.1016/j.cemconcomp.2024.105826","DOIUrl":null,"url":null,"abstract":"<div><div>The porous lightweight aggregates in concrete experience a process of water absorption and desorption. This study aims to improve the performance of water-sensitive low water/binder (w/b) systems by effectively utilizing these water regulations. The effects of expanded shale (ES) substitutions and saturation levels (dry, half saturation, and saturation) on the fresh and hardened properties of mixtures with a w/b of 0.18 were investigated. The results indicated that, during the fresh stage, water absorption reduced workability and shortened the setting time. In the hardening stage, the released water improved hydration, increased internal relative humidity, and caused volumetric expansion, which reduced autogenous shrinkage. A comprehensive evaluation revealed that the optimal condition for ES was half-saturation with 4.0 wt% pre-absorbed water. This condition achieved the best internal curing effect, improved workability, and optimal structural efficiency (strength/density). This study provides practical insights for the effective integration of porous aggregates in the mixture design and engineering applications.</div></div>","PeriodicalId":9865,"journal":{"name":"Cement & concrete composites","volume":"155 ","pages":"Article 105826"},"PeriodicalIF":10.8000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement & concrete composites","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0958946524003998","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The porous lightweight aggregates in concrete experience a process of water absorption and desorption. This study aims to improve the performance of water-sensitive low water/binder (w/b) systems by effectively utilizing these water regulations. The effects of expanded shale (ES) substitutions and saturation levels (dry, half saturation, and saturation) on the fresh and hardened properties of mixtures with a w/b of 0.18 were investigated. The results indicated that, during the fresh stage, water absorption reduced workability and shortened the setting time. In the hardening stage, the released water improved hydration, increased internal relative humidity, and caused volumetric expansion, which reduced autogenous shrinkage. A comprehensive evaluation revealed that the optimal condition for ES was half-saturation with 4.0 wt% pre-absorbed water. This condition achieved the best internal curing effect, improved workability, and optimal structural efficiency (strength/density). This study provides practical insights for the effective integration of porous aggregates in the mixture design and engineering applications.
期刊介绍:
Cement & concrete composites focuses on advancements in cement-concrete composite technology and the production, use, and performance of cement-based construction materials. It covers a wide range of materials, including fiber-reinforced composites, polymer composites, ferrocement, and those incorporating special aggregates or waste materials. Major themes include microstructure, material properties, testing, durability, mechanics, modeling, design, fabrication, and practical applications. The journal welcomes papers on structural behavior, field studies, repair and maintenance, serviceability, and sustainability. It aims to enhance understanding, provide a platform for unconventional materials, promote low-cost energy-saving materials, and bridge the gap between materials science, engineering, and construction. Special issues on emerging topics are also published to encourage collaboration between materials scientists, engineers, designers, and fabricators.