Jie Jin, Chao Wang, Yang Yang, Ronggui Liu, Rong Zheng, Maohua Deng, Jianfeng Wang
{"title":"Response of nitrifier and denitrifier community to Epichloë endophytes mediated host litter decomposition under phosphorus addition treatments","authors":"Jie Jin, Chao Wang, Yang Yang, Ronggui Liu, Rong Zheng, Maohua Deng, Jianfeng Wang","doi":"10.1007/s11104-024-07019-5","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Background and aim</h3><p>Nutrient availability plays a crucial role in both litter decomposition and decomposer communities. However, the specific effects of <i>Epichloë</i> endophytes on soil decomposer communities during the decomposition of their host litter under fertilized conditions are still unclear.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>In this study, qPCR combined with Illumina sequencing was conducted to reveal the responses of functional gene communities involved in organic P recycling (<i>phoD</i>), nitrification (AOA/AOB-<i>amoA</i>), and denitrification (<i>nirS</i>/<i>nirK</i>) to <i>Epichloë gansuensis</i>-mediated decomposition of <i>Achnatherum inebrians</i> litter under different P addition treatments. Meanwhile, soil physicochemical properties and enzyme activities were measured.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>Both <i>E. gansuensis</i> infection and P addition exerted limited effect on the abundance and diversity of <i>phoD</i>-harboring microbial community. In the <i>E. gansuensis</i>-free (E−) samples, 60 mM P addition significantly increased the gene copies of AOA-<i>amoA</i> and significantly decreased those of AOB-<i>amoA</i>. Additionally, P addition decreased the richness and diversity of the <i>nirK</i>-harboring community in the E− samples, while <i>E. gansuensis</i> appeared to alleviate this response. P addition decreased the relative abundance of <i>nirS</i>-harboring <i>Acidovorax</i> and <i>Azospirillum</i>, while increasing the <i>nirK</i>-harboring <i>Rhodopseudomonas</i> and <i>Bosea</i>. Mantel’s test showed that <i>E. gansuensis</i> infection decreased the correlation between nitrifier communities and soil properties. Furthermore, <i>nirS</i>- and <i>nirK</i>-harboring communities showed a similar correlation pattern with soil properties in both E+ and E− soil samples.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>This study demonstrates the important roles of <i>E. gansuensis</i> on nitrifier and denitrifier communities during its host grass decomposition under different P nutrient conditions, facilitating our comprehensive understanding of the ecological significance of <i>Epichloë</i> endophytes.</p>","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":"15 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant and Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11104-024-07019-5","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Background and aim
Nutrient availability plays a crucial role in both litter decomposition and decomposer communities. However, the specific effects of Epichloë endophytes on soil decomposer communities during the decomposition of their host litter under fertilized conditions are still unclear.
Methods
In this study, qPCR combined with Illumina sequencing was conducted to reveal the responses of functional gene communities involved in organic P recycling (phoD), nitrification (AOA/AOB-amoA), and denitrification (nirS/nirK) to Epichloë gansuensis-mediated decomposition of Achnatherum inebrians litter under different P addition treatments. Meanwhile, soil physicochemical properties and enzyme activities were measured.
Results
Both E. gansuensis infection and P addition exerted limited effect on the abundance and diversity of phoD-harboring microbial community. In the E. gansuensis-free (E−) samples, 60 mM P addition significantly increased the gene copies of AOA-amoA and significantly decreased those of AOB-amoA. Additionally, P addition decreased the richness and diversity of the nirK-harboring community in the E− samples, while E. gansuensis appeared to alleviate this response. P addition decreased the relative abundance of nirS-harboring Acidovorax and Azospirillum, while increasing the nirK-harboring Rhodopseudomonas and Bosea. Mantel’s test showed that E. gansuensis infection decreased the correlation between nitrifier communities and soil properties. Furthermore, nirS- and nirK-harboring communities showed a similar correlation pattern with soil properties in both E+ and E− soil samples.
Conclusions
This study demonstrates the important roles of E. gansuensis on nitrifier and denitrifier communities during its host grass decomposition under different P nutrient conditions, facilitating our comprehensive understanding of the ecological significance of Epichloë endophytes.
期刊介绍:
Plant and Soil publishes original papers and review articles exploring the interface of plant biology and soil sciences, and that enhance our mechanistic understanding of plant-soil interactions. We focus on the interface of plant biology and soil sciences, and seek those manuscripts with a strong mechanistic component which develop and test hypotheses aimed at understanding underlying mechanisms of plant-soil interactions. Manuscripts can include both fundamental and applied aspects of mineral nutrition, plant water relations, symbiotic and pathogenic plant-microbe interactions, root anatomy and morphology, soil biology, ecology, agrochemistry and agrophysics, as long as they are hypothesis-driven and enhance our mechanistic understanding. Articles including a major molecular or modelling component also fall within the scope of the journal. All contributions appear in the English language, with consistent spelling, using either American or British English.