Facile fabrication of hemicrystalline bio-based polycarbonate with superhydrophobic and high transmittance

IF 4.1 2区 化学 Q2 POLYMER SCIENCE
Yiwen Zhang , Chenhao Li , Hao Wang , Zhao Yang , Wentao Zhang , Zhencai Zhang , Ruixia Liu , Fei Xu
{"title":"Facile fabrication of hemicrystalline bio-based polycarbonate with superhydrophobic and high transmittance","authors":"Yiwen Zhang ,&nbsp;Chenhao Li ,&nbsp;Hao Wang ,&nbsp;Zhao Yang ,&nbsp;Wentao Zhang ,&nbsp;Zhencai Zhang ,&nbsp;Ruixia Liu ,&nbsp;Fei Xu","doi":"10.1016/j.polymer.2024.127729","DOIUrl":null,"url":null,"abstract":"<div><div>Developing materials that combine superhydrophobic properties with high optical transmittance poses a significant challenge. In this study, hydroxyl-terminated polydimethylsiloxane (HT-PDMS) and isosorbide (ISB) were polymerized in a single step to create a covalently bonded optical polycarbonate material. By inducing the formation of micro-papillary and lotus-shaped nanoscale structures via a solvent-triggered process, we significantly enhanced the “air cushion” effect, achieving a structure scale of approximately 5–7 μm. This resulted in a water contact angle of 157° while maintaining over 90 % optical transmittance. The structures were uniformly distributed throughout the polymer matrix, leading to a 500 % increase in tensile strength at break compared to pure isosorbide polycarbonate, with a maximum strength exceeding 50 MPa. These multifunctional materials show great promise for applications in smart windows, solar panels, camera lenses, and other optoelectronic devices.</div></div>","PeriodicalId":405,"journal":{"name":"Polymer","volume":"313 ","pages":"Article 127729"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032386124010656","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Developing materials that combine superhydrophobic properties with high optical transmittance poses a significant challenge. In this study, hydroxyl-terminated polydimethylsiloxane (HT-PDMS) and isosorbide (ISB) were polymerized in a single step to create a covalently bonded optical polycarbonate material. By inducing the formation of micro-papillary and lotus-shaped nanoscale structures via a solvent-triggered process, we significantly enhanced the “air cushion” effect, achieving a structure scale of approximately 5–7 μm. This resulted in a water contact angle of 157° while maintaining over 90 % optical transmittance. The structures were uniformly distributed throughout the polymer matrix, leading to a 500 % increase in tensile strength at break compared to pure isosorbide polycarbonate, with a maximum strength exceeding 50 MPa. These multifunctional materials show great promise for applications in smart windows, solar panels, camera lenses, and other optoelectronic devices.

Abstract Image

Abstract Image

轻松制备具有超疏水和高透光率的半结晶生物基聚碳酸酯
开发兼具超疏水特性和高透光率的材料是一项重大挑战。在这项研究中,羟基封端聚二甲基硅氧烷(HT-PDMS)和异山梨醇(ISB)通过一步聚合生成了共价键合的光学聚碳酸酯材料。通过溶剂触发工艺诱导形成微毛细管和莲花状纳米结构,我们显著增强了 "气垫 "效应,实现了约 5-7 μm 的结构尺度。这使得水接触角达到 157°,同时保持了 90% 以上的透光率。这些结构均匀地分布在整个聚合物基体中,与纯异山梨醇聚碳酸酯相比,断裂拉伸强度提高了 500%,最大强度超过 50 兆帕。这些多功能材料在智能窗户、太阳能电池板、相机镜头和其他光电设备中的应用前景广阔。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymer
Polymer 化学-高分子科学
CiteScore
7.90
自引率
8.70%
发文量
959
审稿时长
32 days
期刊介绍: Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics. The main scope is covered but not limited to the following core areas: Polymer Materials Nanocomposites and hybrid nanomaterials Polymer blends, films, fibres, networks and porous materials Physical Characterization Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films Polymer Engineering Advanced multiscale processing methods Polymer Synthesis, Modification and Self-assembly Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization Technological Applications Polymers for energy generation and storage Polymer membranes for separation technology Polymers for opto- and microelectronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信