Spider Webs‐Inspired Aluminum Coordination Hydrogel Piezoionic Sensors for Tactile Nerve Systems

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiaoyu Guan, Sai Zheng, Jianxun Luo, Xingchen Liu, Xuechuan Wang, Bingyuan Zhang, Yanxia Zhu, Dongping Li, Qingxin Han, Motoki Ueda, Meng An
{"title":"Spider Webs‐Inspired Aluminum Coordination Hydrogel Piezoionic Sensors for Tactile Nerve Systems","authors":"Xiaoyu Guan, Sai Zheng, Jianxun Luo, Xingchen Liu, Xuechuan Wang, Bingyuan Zhang, Yanxia Zhu, Dongping Li, Qingxin Han, Motoki Ueda, Meng An","doi":"10.1002/adfm.202414016","DOIUrl":null,"url":null,"abstract":"Piezoionics, a new frontier that employs mobile ions as energy and charge carriers, plays an important role in new energy and intelligent electronics. However, a significant challenge consists in balancing the structural design of metal ions coordination hydrogel (HG‐MI) piezoionics for current conduction, voltage generation, and especially mechanical adaptability. Herein, inspired by the spider webs' unique structure, a strategy by realizing the full potential of metal‐ligand ions ([(OH)Cl<jats:sub>2</jats:sub>]<jats:sup>3−</jats:sup>) to facilitate the keggin‐type structure AlOHAlOH generation together with activate functional carboxyls is introduced. Impressively, the whole property of the product HG‐Al<jats:italic><jats:sub>PAC</jats:sub></jats:italic>, especially the mechanical performance is improved. For example, the toughness of HG‐Al<jats:italic><jats:sub>PAC</jats:sub></jats:italic> is 2.75 MJ m<jats:sup>−3</jats:sup>, more than twofold that of traditional HG‐Al<jats:italic><jats:sub>AS/AC/AN</jats:sub></jats:italic> samples. Due to the stable fixation of ─Al─OH─ thus promoting Cl<jats:sup>−</jats:sup> separation upon external force, HG‐Al<jats:italic><jats:sub>PAC</jats:sub></jats:italic> achieves a piezoionic coefficient of 0.89 mV KPa<jats:sup>−1</jats:sup> and energy conversion efficiency of 1.29%, promising for mechanical‐electrical conversion and sensing. Combined with the good mechanical performance with the excellent piezoionic properties, underscores its potential as a tactile nerve system of analgesia patients to prevent them from being injured. This work intends to provide a stride toward mechanically robust self‐powered piezoionic sensors and offer insights into ionotropic materials for energy harvesting, human‐machine interaction, and biointerface.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"5 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202414016","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Piezoionics, a new frontier that employs mobile ions as energy and charge carriers, plays an important role in new energy and intelligent electronics. However, a significant challenge consists in balancing the structural design of metal ions coordination hydrogel (HG‐MI) piezoionics for current conduction, voltage generation, and especially mechanical adaptability. Herein, inspired by the spider webs' unique structure, a strategy by realizing the full potential of metal‐ligand ions ([(OH)Cl2]3−) to facilitate the keggin‐type structure AlOHAlOH generation together with activate functional carboxyls is introduced. Impressively, the whole property of the product HG‐AlPAC, especially the mechanical performance is improved. For example, the toughness of HG‐AlPAC is 2.75 MJ m−3, more than twofold that of traditional HG‐AlAS/AC/AN samples. Due to the stable fixation of ─Al─OH─ thus promoting Cl separation upon external force, HG‐AlPAC achieves a piezoionic coefficient of 0.89 mV KPa−1 and energy conversion efficiency of 1.29%, promising for mechanical‐electrical conversion and sensing. Combined with the good mechanical performance with the excellent piezoionic properties, underscores its potential as a tactile nerve system of analgesia patients to prevent them from being injured. This work intends to provide a stride toward mechanically robust self‐powered piezoionic sensors and offer insights into ionotropic materials for energy harvesting, human‐machine interaction, and biointerface.

Abstract Image

用于触觉神经系统的蜘蛛网灵感铝配位水凝胶压电传感器
压电技术是利用移动离子作为能量和电荷载体的新领域,在新能源和智能电子领域发挥着重要作用。然而,如何平衡金属离子配位水凝胶(HG-MI)压电元件的结构设计,以实现电流传导、电压产生,尤其是机械适应性,是一项重大挑战。本文受蜘蛛网独特结构的启发,提出了一种充分发挥金属配体离子([(OH)Cl2]3-)潜力的策略,以促进克金型结构 AlOHAlOH 的生成,同时激活功能性羧基。令人印象深刻的是,产品 HG-AlPAC 的整体性能,尤其是机械性能得到了改善。例如,HG-AlPAC 的韧性为 2.75 MJ m-3,是传统 HG-AlAS/AC/AN 样品的两倍多。由于 -Al─OH─ 的稳定固定,从而在外力作用下促进 Cl- 分离,HG-AlPAC 的压电系数达到 0.89 mV KPa-1,能量转换效率达到 1.29%,有望用于机械-电气转换和传感。良好的机械性能与优异的压电特性相结合,凸显了其作为镇痛患者触觉神经系统以防止其受伤的潜力。这项工作旨在向机械坚固的自供电压电传感器迈进,并为能量收集、人机交互和生物界面的离子材料提供深入见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信