Nicholas D. Calvert, Joshua Baxter, Aidan A. Torrens, Jesse Thompson, Alexia Kirby, Jaspreet Walia, Spyridon Ntais, Eva Hemmer, Pierre Berini, Benjamin Hibbert, Lora Ramunno, Adam J. Shuhendler
{"title":"NIR-II scattering gold superclusters for intravascular optical coherence tomography molecular imaging","authors":"Nicholas D. Calvert, Joshua Baxter, Aidan A. Torrens, Jesse Thompson, Alexia Kirby, Jaspreet Walia, Spyridon Ntais, Eva Hemmer, Pierre Berini, Benjamin Hibbert, Lora Ramunno, Adam J. Shuhendler","doi":"10.1038/s41565-024-01802-2","DOIUrl":null,"url":null,"abstract":"<p>Currently, intravascular optical coherence tomography (IV-OCT) is limited to anatomical imaging, providing structural information about atherosclerotic plaque morphology, thrombus and dissection. Earlier detection and risk stratification would be possible through molecular characterization of endothelium but necessitates a purpose-engineered IV-OCT contrast agent. Here we developed gold superclusters (AuSCs) tailored to clinical instrumentation and integrated into clinically relevant workflows. AuSCs are aqueously dispersible clusters of closely packed small gold nanoparticles, affording plasmon hybridization to maximize light scattering at the IV-OCT laser line (~1,350 nm). A polymer coating fosters AuSC uniformity and provides a functionalizable handle, which we targeted to intravascular P-selectin, an early vascular endothelial marker of inflammation. In a rat model of intravascular inflammation, P-selectin-targeted AuSC facilitated IV-OCT molecular imaging, where the strength of the signal correlates with the severity of vascular inflammation.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"49 1","pages":""},"PeriodicalIF":38.1000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41565-024-01802-2","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Currently, intravascular optical coherence tomography (IV-OCT) is limited to anatomical imaging, providing structural information about atherosclerotic plaque morphology, thrombus and dissection. Earlier detection and risk stratification would be possible through molecular characterization of endothelium but necessitates a purpose-engineered IV-OCT contrast agent. Here we developed gold superclusters (AuSCs) tailored to clinical instrumentation and integrated into clinically relevant workflows. AuSCs are aqueously dispersible clusters of closely packed small gold nanoparticles, affording plasmon hybridization to maximize light scattering at the IV-OCT laser line (~1,350 nm). A polymer coating fosters AuSC uniformity and provides a functionalizable handle, which we targeted to intravascular P-selectin, an early vascular endothelial marker of inflammation. In a rat model of intravascular inflammation, P-selectin-targeted AuSC facilitated IV-OCT molecular imaging, where the strength of the signal correlates with the severity of vascular inflammation.
期刊介绍:
Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations.
Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.