{"title":"Exploring failure evolution of anti-dip slate slope using centrifuge test and discrete element method","authors":"Meng-Chia Weng, Chia-Hsun Peng, Wen-Yi Hung, Yu-Jiun Guo","doi":"10.1007/s10064-024-03972-8","DOIUrl":null,"url":null,"abstract":"<div><p>Toppling failure commonly occurs in anti-dip slate slopes due to foliation splitting and gravitational deformation. The study uses centrifuge tests and the discrete element method (DEM) to investigate the influence of foliation and existing fractures on the toppling failure evolution of anti-dip slopes. Six centrifuge tests with slate blocks obtained from an actual slope were carried out. Then, a proposed foliation model was implemented in the DEM software 3DEC to simulate the failure evolution of anti-dip slopes. The 3DEC analysis was validated by the actual failure pattern of slopes in centrifuge tests. The results indicate that the toppling failure of the anti-dip slope was initiated by existing fractures rather than the original cohesive foliation. Though the slate foliation is regarded as a weak plane in the rock mass, it retains a higher strength than the existing fracture, so the toppling failure is difficult to initiate from the cohesive foliation. The closer the fracture is to the free surface, the more pronounced the damage. In addition, the simulation indicates that the existing fracture's position also affects the anti-dip slope's failure degree. The fractures on the top propagate more easily than those on the bottom.</p></div>","PeriodicalId":500,"journal":{"name":"Bulletin of Engineering Geology and the Environment","volume":"83 11","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10064-024-03972-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Engineering Geology and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10064-024-03972-8","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Toppling failure commonly occurs in anti-dip slate slopes due to foliation splitting and gravitational deformation. The study uses centrifuge tests and the discrete element method (DEM) to investigate the influence of foliation and existing fractures on the toppling failure evolution of anti-dip slopes. Six centrifuge tests with slate blocks obtained from an actual slope were carried out. Then, a proposed foliation model was implemented in the DEM software 3DEC to simulate the failure evolution of anti-dip slopes. The 3DEC analysis was validated by the actual failure pattern of slopes in centrifuge tests. The results indicate that the toppling failure of the anti-dip slope was initiated by existing fractures rather than the original cohesive foliation. Though the slate foliation is regarded as a weak plane in the rock mass, it retains a higher strength than the existing fracture, so the toppling failure is difficult to initiate from the cohesive foliation. The closer the fracture is to the free surface, the more pronounced the damage. In addition, the simulation indicates that the existing fracture's position also affects the anti-dip slope's failure degree. The fractures on the top propagate more easily than those on the bottom.
期刊介绍:
Engineering geology is defined in the statutes of the IAEG as the science devoted to the investigation, study and solution of engineering and environmental problems which may arise as the result of the interaction between geology and the works or activities of man, as well as of the prediction of and development of measures for the prevention or remediation of geological hazards. Engineering geology embraces:
• the applications/implications of the geomorphology, structural geology, and hydrogeological conditions of geological formations;
• the characterisation of the mineralogical, physico-geomechanical, chemical and hydraulic properties of all earth materials involved in construction, resource recovery and environmental change;
• the assessment of the mechanical and hydrological behaviour of soil and rock masses;
• the prediction of changes to the above properties with time;
• the determination of the parameters to be considered in the stability analysis of engineering works and earth masses.