Preparation of micro-meso-macroporous structured hydrangea-like cobaltous sulfide with sulphur vacancy for high-performance electromagnetic wave absorption
{"title":"Preparation of micro-meso-macroporous structured hydrangea-like cobaltous sulfide with sulphur vacancy for high-performance electromagnetic wave absorption","authors":"Hanwen Zhang, Liyuan Liu, Qiuyu Li, Xiubo Xie, Wei Du, Chuanxin Hou","doi":"10.1007/s42114-024-01028-9","DOIUrl":null,"url":null,"abstract":"<div><p>Cobaltous sulfide shows good potential as substances to absorb electromagnetic waves (EWs) due to its features of relatively high conductivity, excellent electrocatalytic activity and inexpensive price. However, there are still great challenges to achieve a broad absorption frequency and strong EW absorption capability. Herein, hydrangea-like CoS with micro-meso-macroporous multilamellar intersecting structure was synthesized by an elementary one-pot hydro-thermal synthesis. The uniquely designed morphology and content of sulphur vacancy of CoS was optimized by controlling synthesis time, which proved to effectively modulate the electromagnetic parameters. The optimized electromagnetic wave-absorbing materials (EWAMs) present the satisfactory EW-absorbing ability, including the minimum reflection loss (RL<sub>min</sub>) of − 21.27 dB at a frequency of 12.48 GHz, a maximum effective absorption bandwidth (EAB<sub>max</sub>) of 5.6 GHz at a thickness of 1.9 mm. The superior EW absorbing performance of CoS was thanks to the cooperative effect of impedance-match, dipole polarization, Maxwell–Wagner effect and conductive loss. Furthermore, the radar cross section (RCS) simulation results further proved its dissipation capability of CoS EWAMs in actual application scenarios. This facile structural design strategy provides a new direction for preparation of CoS-based and other EWAMs with high EW-absorbing ability, which possesses extensive their further potential practical application.</p></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"7 6","pages":""},"PeriodicalIF":23.2000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-024-01028-9","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Cobaltous sulfide shows good potential as substances to absorb electromagnetic waves (EWs) due to its features of relatively high conductivity, excellent electrocatalytic activity and inexpensive price. However, there are still great challenges to achieve a broad absorption frequency and strong EW absorption capability. Herein, hydrangea-like CoS with micro-meso-macroporous multilamellar intersecting structure was synthesized by an elementary one-pot hydro-thermal synthesis. The uniquely designed morphology and content of sulphur vacancy of CoS was optimized by controlling synthesis time, which proved to effectively modulate the electromagnetic parameters. The optimized electromagnetic wave-absorbing materials (EWAMs) present the satisfactory EW-absorbing ability, including the minimum reflection loss (RLmin) of − 21.27 dB at a frequency of 12.48 GHz, a maximum effective absorption bandwidth (EABmax) of 5.6 GHz at a thickness of 1.9 mm. The superior EW absorbing performance of CoS was thanks to the cooperative effect of impedance-match, dipole polarization, Maxwell–Wagner effect and conductive loss. Furthermore, the radar cross section (RCS) simulation results further proved its dissipation capability of CoS EWAMs in actual application scenarios. This facile structural design strategy provides a new direction for preparation of CoS-based and other EWAMs with high EW-absorbing ability, which possesses extensive their further potential practical application.
期刊介绍:
Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field.
The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest.
Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials.
Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.