{"title":"Harnessing Graphitic Carbon Nitride for the Effective Amelioration of Cd-Induced Phytotoxicity in Native Rice Cultivar","authors":"Shalini Viswanathan, Aparna Kallingal","doi":"10.1007/s11270-024-07581-9","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the adverse effects of cadmium (Cd) on rice plant growth and the mitigating potential of graphitic carbon nitride (g-CN), supported by detailed material characterization. Cd exposure significantly inhibited plant growth, reducing root length by 54% and shoot length by 33%. However, the introduction of g-CN improved overall plant health, reducing Cd toxicity by 35% at an optimal dosage of 150 mg/L. The g-CN's effectiveness is attributed to its structural and chemical properties, as revealed by comprehensive characterization. Field Emission Scanning Electron Microscopy (FESEM) analysis showed thin, flake-like structures, while X-ray diffraction (XRD) studies confirmed its highly crystalline nature, with peaks corresponding to the (100) and (002) planes of crystalline g-CN. Fourier transform infrared (FTIR) analysis identified functional groups such as the tri-s-triazine unit and C-N/C = N stretching vibrations, confirming the formation of g-CN. Brunauer–Emmett–Teller (BET) analysis demonstrated the mesoporous nature of the material, with a specific surface area of 66 m<sup>2</sup>/g, indicating its high reactivity and potential for interaction with plant systems. These properties likely contribute to g-CN's ability to enhance root architecture, increase nutrient absorption, and promote fresh biomass production. Additionally, g-CN helped maintain a balanced carbon-to-nitrogen ratio by supporting improved photosynthesis and nitrogen uptake. These findings underscore the potential of g-CN as a nanomaterial for mitigating heavy metal stress in crops, offering a promising approach to enhancing crop resilience in contaminated environments.</p></div>","PeriodicalId":808,"journal":{"name":"Water, Air, & Soil Pollution","volume":"235 12","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water, Air, & Soil Pollution","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s11270-024-07581-9","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the adverse effects of cadmium (Cd) on rice plant growth and the mitigating potential of graphitic carbon nitride (g-CN), supported by detailed material characterization. Cd exposure significantly inhibited plant growth, reducing root length by 54% and shoot length by 33%. However, the introduction of g-CN improved overall plant health, reducing Cd toxicity by 35% at an optimal dosage of 150 mg/L. The g-CN's effectiveness is attributed to its structural and chemical properties, as revealed by comprehensive characterization. Field Emission Scanning Electron Microscopy (FESEM) analysis showed thin, flake-like structures, while X-ray diffraction (XRD) studies confirmed its highly crystalline nature, with peaks corresponding to the (100) and (002) planes of crystalline g-CN. Fourier transform infrared (FTIR) analysis identified functional groups such as the tri-s-triazine unit and C-N/C = N stretching vibrations, confirming the formation of g-CN. Brunauer–Emmett–Teller (BET) analysis demonstrated the mesoporous nature of the material, with a specific surface area of 66 m2/g, indicating its high reactivity and potential for interaction with plant systems. These properties likely contribute to g-CN's ability to enhance root architecture, increase nutrient absorption, and promote fresh biomass production. Additionally, g-CN helped maintain a balanced carbon-to-nitrogen ratio by supporting improved photosynthesis and nitrogen uptake. These findings underscore the potential of g-CN as a nanomaterial for mitigating heavy metal stress in crops, offering a promising approach to enhancing crop resilience in contaminated environments.
期刊介绍:
Water, Air, & Soil Pollution is an international, interdisciplinary journal on all aspects of pollution and solutions to pollution in the biosphere. This includes chemical, physical and biological processes affecting flora, fauna, water, air and soil in relation to environmental pollution. Because of its scope, the subject areas are diverse and include all aspects of pollution sources, transport, deposition, accumulation, acid precipitation, atmospheric pollution, metals, aquatic pollution including marine pollution and ground water, waste water, pesticides, soil pollution, sewage, sediment pollution, forestry pollution, effects of pollutants on humans, vegetation, fish, aquatic species, micro-organisms, and animals, environmental and molecular toxicology applied to pollution research, biosensors, global and climate change, ecological implications of pollution and pollution models. Water, Air, & Soil Pollution also publishes manuscripts on novel methods used in the study of environmental pollutants, environmental toxicology, environmental biology, novel environmental engineering related to pollution, biodiversity as influenced by pollution, novel environmental biotechnology as applied to pollution (e.g. bioremediation), environmental modelling and biorestoration of polluted environments.
Articles should not be submitted that are of local interest only and do not advance international knowledge in environmental pollution and solutions to pollution. Articles that simply replicate known knowledge or techniques while researching a local pollution problem will normally be rejected without review. Submitted articles must have up-to-date references, employ the correct experimental replication and statistical analysis, where needed and contain a significant contribution to new knowledge. The publishing and editorial team sincerely appreciate your cooperation.
Water, Air, & Soil Pollution publishes research papers; review articles; mini-reviews; and book reviews.