Tongrui Li, Yang Liu, Hongen Zhu, Haiping Chen, Zhanfeng Liu, Zhengming Shang, Yuliang Li, Hui Tian, Yunbo Wu, Yuhao Hong, Haihua Luo, Yi Liu, Guobin Zhang, Lidong Zhang, Yuqiao Guo, Changzheng Wu, Li Song, Shengtao Cui, Zhe Sun
{"title":"Disentangling the electron-lattice dichotomy of the excitonic insulating phase in Ta2Ni(Se1−xSx)5 with sulfur substitution and potassium deposition","authors":"Tongrui Li, Yang Liu, Hongen Zhu, Haiping Chen, Zhanfeng Liu, Zhengming Shang, Yuliang Li, Hui Tian, Yunbo Wu, Yuhao Hong, Haihua Luo, Yi Liu, Guobin Zhang, Lidong Zhang, Yuqiao Guo, Changzheng Wu, Li Song, Shengtao Cui, Zhe Sun","doi":"10.1007/s11433-024-2480-4","DOIUrl":null,"url":null,"abstract":"<div><p>Ta<sub>2</sub>NiSe<sub>5</sub> is a promising candidate for hosting an excitonic insulator (EI) phase, a novel electronic state driven by electron-hole Coulomb attraction. However, the role of electron-lattice coupling in the formation of the EI phase remains controversial. Here, we use angle-resolved photoemission spectroscopy (ARPES) to study the band structure evolution of Ta<sub>2</sub>Ni(Se<sub>1−<i>x</i></sub>S<sub><i>x</i></sub>)<sub>5</sub> with sulfur substitution and potassium deposition, which modulate the band gap and the carrier concentration, respectively. We find that the Ta 5<i>d</i> states originating from the bottom of the conduction band persist at the top of the valence band in the low-temperature monoclinic phase, indicating the importance of exciton condensation in opening the gap in the semi-metallic band structure. We also observe that the characteristic overlap between the conduction and valence bands can be restored in the monoclinic lattice by mild carrier injection, suggesting that the lattice distortion in the monoclinic phase is not the main factor for producing the insulating gap, but rather the exciton condensation in the electronic system is the dominant driving force. Our results shed light on the electron-lattice decoupling and the origin of the EI phase in Ta<sub>2</sub>Ni(Se<sub>1−<i>x</i></sub>S<sub><i>x</i></sub>)<sub>5</sub>.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"67 12","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Physics, Mechanics & Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11433-024-2480-4","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Ta2NiSe5 is a promising candidate for hosting an excitonic insulator (EI) phase, a novel electronic state driven by electron-hole Coulomb attraction. However, the role of electron-lattice coupling in the formation of the EI phase remains controversial. Here, we use angle-resolved photoemission spectroscopy (ARPES) to study the band structure evolution of Ta2Ni(Se1−xSx)5 with sulfur substitution and potassium deposition, which modulate the band gap and the carrier concentration, respectively. We find that the Ta 5d states originating from the bottom of the conduction band persist at the top of the valence band in the low-temperature monoclinic phase, indicating the importance of exciton condensation in opening the gap in the semi-metallic band structure. We also observe that the characteristic overlap between the conduction and valence bands can be restored in the monoclinic lattice by mild carrier injection, suggesting that the lattice distortion in the monoclinic phase is not the main factor for producing the insulating gap, but rather the exciton condensation in the electronic system is the dominant driving force. Our results shed light on the electron-lattice decoupling and the origin of the EI phase in Ta2Ni(Se1−xSx)5.
Ta2NiSe5很有希望成为激子绝缘体(EI),这是一种由电子-空穴库仑吸引驱动的新型电子状态。然而,电子-晶格耦合在 EI 相形成中的作用仍存在争议。在这里,我们利用角度分辨光发射光谱(ARPES)研究了 Ta2Ni(Se1-xSx)5 在硫替代和钾沉积过程中的能带结构演化,硫替代和钾沉积分别调节了能带间隙和载流子浓度。我们发现,在低温单斜相中,源于导带底部的 Ta 5d 态持续存在于价带顶部,这表明激子凝聚在打开半金属带结构间隙中的重要性。我们还观察到,在单斜晶格中,温和的载流子注入可以恢复导带和价带之间的重叠特征,这表明单斜晶格的晶格畸变并不是产生绝缘间隙的主要因素,电子系统中的激子凝聚才是主要的驱动力。我们的研究结果揭示了 Ta2Ni(Se1-xSx)5 中的电子-晶格解耦和 EI 相的起源。
期刊介绍:
Science China Physics, Mechanics & Astronomy, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research.
Science China Physics, Mechanics & Astronomy, is published in both print and electronic forms. It is indexed by Science Citation Index.
Categories of articles:
Reviews summarize representative results and achievements in a particular topic or an area, comment on the current state of research, and advise on the research directions. The author’s own opinion and related discussion is requested.
Research papers report on important original results in all areas of physics, mechanics and astronomy.
Brief reports present short reports in a timely manner of the latest important results.